

FEATURES

- ► DIP-24 Plastic Package
- ► Wide 2:1 Input Range
- ► High Efficiency up to 86%
- ▶ Operating Ambient Temp. Range –40°C to +85°C
- ► Short Circuit Protection
- ► I/O-isolation 1500VDC
- ► Cost optimized Design

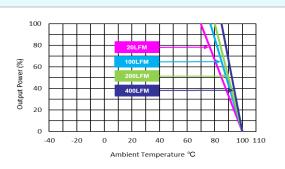
PRODUCT OVERVIEW

The MINMAX MIW3100 series is a range of isolated 6W DC-DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges. The product comes in a DIP-24 plastic package with industry standard pinout. An excellent efficiency allows an operating temperature range of –40 °C to +85°C. These DC-DC converters offer an economical solution for many cost critical applications in battery-powered equipment and instrumentation.

Model Selec	tion Guide									
Model	Input	Output	Output		Inp	out	Reflected	Max. capacitive	Efficiency	
Number	Voltage	Voltage Current Cu		rent Ripple		Load	(typ.)			
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load	
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%	
MIW3121		3.3	1200	60	429					77
MIW3122	40	5	1000	50	514		6800	81		
MIW3123	12	12	500	25	595	20	25		84	
MIW3126	(9 ~ 18)	±12	±250	±12.5	595				1000#	84
MIW3127		±15	±200	±10	595					84
MIW3131		3.3	1200	60	209				79	
MIW3132		5	1000	50	251			6800	83	
MIW3133	24	12	500	25	291	5	15		86	
MIW3136	(18 ~ 36)	±12	±250	±12.5	291			4000#	86	
MIW3137		±15	±200	±10	291			1000#	86	

For each output

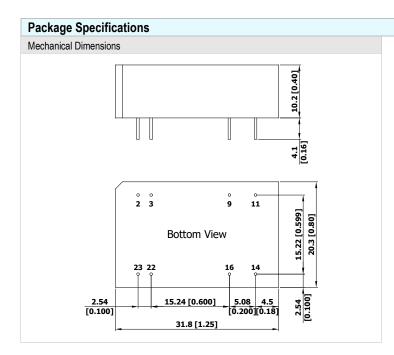
Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
Innut Come Vallage (4 and result	12V Input Models	-0.7		25		
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	VDC	
01-411-1/-11	12V Input Models	4.5	6	8		
Start-Up Voltage	24V Input Models	8	12	16		
Index Veltage Chatdama	12V Input Models			8		
Under Voltage Shutdown	24V Input Models			16		
Short Circuit Input Power		10		3000	mW	
nternal Power Dissipation	All Models			2500	mW	
nput Filter			Internal Pi Type			
Conducted EMI (with suffix A only)	Compliance to EN 5502			N 55022, clas	ss A	



Output Specifications					
Parameter	Conditions		Тур.	Max.	Unit
Output Voltage Setting Accuracy			±0.5	±1.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.1	±0.3	%
Load Regulation	lation Io=20% to 100%		±0.3	±1.0	%
Ripple & Noise	0-20 MHz Bandwidth		50	75	mV _{P-P}
Transient Recovery Time	OFO(Level Oter Observe		150	300	uS
Transient Response Deviation	25% Load Step Change		±2	±6	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Current Protection	Foldback	120	150		%
Short Circuit Protection Continuous, Automatic Recovery					

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
NO la alatia a Malta da	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Seconds	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		380	500	pF	
Switching Frequency			300		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign		1,000,000			
Safety Approvals	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)					

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C		
Case Temperature		+90	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		


Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
2	-Vin	-Vin	Ø 0.5 [0.02]			
3	-Vin	-Vin	Ø 0.5 [0.02]			
9	No Pin	Common	Ø 0.5 [0.02]			
11	NC	-Vout	Ø 0.5 [0.02]			
14	+Vout	+Vout	Ø 0.5 [0.02]			
16	-Vout	Common	Ø 0.5 [0.02]			
22	+Vin	+Vin	Ø 0.5 [0.02]			
23	+Vin	+Vin	Ø 0.5 [0.02]			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

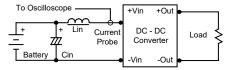
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 31.8x20.3x10.2mm (1.25x0.80x0.40 Inches)

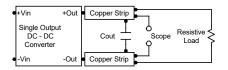
Case Material : Plastic resin (flammability to UL 94V-0 rated)

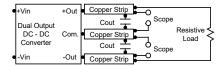
Pin Material : Phosphor Bronze


Weight : 12.5g

Order Code Table				
Standard	With EMI			
MIW3121	MIW3121A			
MIW3122	MIW3122A			
MIW3123	MIW3123A			
MIW3126	MIW3126A			
MIW3127	MIW3127A			
MIW3131	MIW3131A			
MIW3132	MIW3132A			
MIW3133	MIW3133A			
MIW3136	MIW3136A			
MIW3137	MIW3137A			

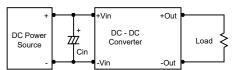
Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

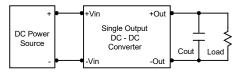
Peak-to-Peak Output Noise Measurement Test

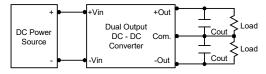
Use a Cout $0.47\,\mu\text{F}$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overcurrent Protection

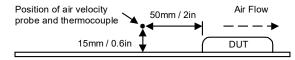
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 3.3μ F for the 12V input devices and a 2.2μ F for the 24V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $3.3\mu\text{F}$ capacitors at the output.



Maximum Capacitive Load

MIW3100 series have limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 1000µF maximum capacitive load for dual outputs and 6800µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan
Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw

202