

MTQZ50 Series EC Note

DC-DC CONVERTER 50W, Railway Certified

Features

- Industrial Standard Quarter Brick Package
- ► Wide Input Range 43-101VDC & 66-160VDC
- ► Excellent Efficiency up to 92%
- ▶ I/O Isolation 3000VAC with Reinforced Insulation
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► No Min. Load Requirement
- ► Under-voltage, Overload/Voltage/Temp. and Short Circuit Protection
- ► Remote On/Off, Output Voltage Trim, Output Sensing
- ▶ Vibration and Shock/Bump Test EN 61373 Approved
- ► Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- ► Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ➤ Communications equipment

Product Overview

The MINMAX MTQZ50 series is a generation of high performance, convection-cooled 50W DC-DC converters designed specifically for railway applications. Both 72(43-101)VDC and 110(66-160)VDC input voltage range is popular in railway usage, and also available in Minmax product lines.

The converters conform to railway industry transient standard EN 50155 and complies also with EMC standard EN 50121-3-2. Advanced circuit topology provides a high efficiency up to 92% which allows operating temperatures range of -40°C to +85°C. For improved heat dissipation the modules can be supplied with a heatsink. Further product features include high, reinforced insulation, remote On/Off control, under-voltage shutdown as well as overload, over voltage, over temperature and short circuit protection.

Table of contents

Model Selection GuideP2	Recommended Pad Layout	P14
Input SpecificationsP2	External Output Trimming	P15
Remote On/Off ControlP2	Test Setup	P16
Output SpecificationsP2	Technical Notes	P16
General SpecificationsP3	Remote On/Off Implementation	P17
EMC SpecificationsP3	Packaging Information	P18
Environmental SpecificationsP3	Wave Soldering Considerations	P18
Characteristic CurvesP4	Hand Welding Parameter	P18
Package SpecificationsP13	Part Number Structure	P19
PCB Installation of End UsersP14	MTBF and Reliability	P19

Model Selection Guide									
Model	Input	Output	Output	Inp	Input		Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	VDC	μF	%
MTQZ50-72S05		5	10000	771	50		6.2	17000	90
MTQZ50-72S12	72	12	4170	755	45	35	15	2950	92
MTQZ50-72S15	(43 ~ 101)	15	3330	754	45		18	1900	92
MTQZ50-72S24		24	2080	762	50		30	740	91
MTQZ50-110S05		5	10000	505	40		6.2	17000	90
MTQZ50-110S12	110	12	4170	500	35	25	15	2950	91
MTQZ50-110S15	(66 ~ 160)	15	3330	494	35	35	18	1900	92
MTQZ50-110S24		24	2080	499	40		30	740	91

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
General	Input Specific	cations comply	to		
Innut Curso Valtore (100mg may)	72V Input Models	-0.7		165	
Input Surge Voltage (100ms. max)	110V Input Models	-0.7		250	
Ctart up Threshold Voltage	72V Input Models			43	VDC
Start-up Threshold Voltage	110V Input Models			66	VDC
Lladas Valtara Chutdaus	72V Input Models		40		
Under Voltage Shutdown	110V Input Models		63		
Start-up Time	All Madala		0.35		S
Input Filter	All Models	Internal Pi Type			

Remote On/Off Control							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V ~ 1.2V or Short Circuit						
Control Input Current (on)	Vctrl = 5.0V		0.5		mA		
Control Input Current (off)	Vctrl = 0V		-0.5		mA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		2.5		mA		

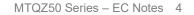
Output Specifications							
Parameter	Condition	s / Model	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%Vnom.	
Line Regulation	Vin=Min. to Ma	x. @ Full Load			±0.2	%	
Load Regulation	lo=0% t	o 100%			±0.3	%	
Minimum Load		No minimum Load Requirement					
	0.00 MH = D = - 4 - 144	24V Output			150	mV _{P-P}	
Ripple & Noise ₍₃₎	0-20 MHz Bandwidth	Other Output			100	mV _{P-P}	
Transient Recovery Time	050/ 1 10/	01		250		µsec	
Transient Response Deviation	25% Load Sto	ep Change (2)		±3	±5	%	
Temperature Coefficient					±0.02	%/°C	
Trim Up / Down Range (See Page 15)	% of Nominal (% of Nominal Output Voltage			±10	%	
Over Load Protection	Hic	Hiccup		150		%	
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 0.5Hz typ.)					

Date:2023-04-28 Rev:11 MTQZ50 Series – EC Notes 2

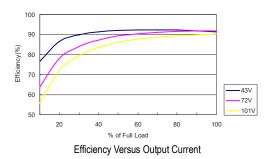
General Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	3000			VAC		
Isolation Voltage Input/Output to case		1500			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V	3000 pl		pF			
Switching Frequency		320 kHz		kHz			
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign	314,900 Hours					
Cofet: Oten dende	cUL/UL 60950-1, IEC/EN 60950-1, EN 50155,IEC60571						
Safety Standards	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						

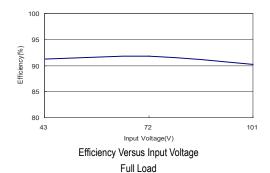
EMC Specifications							
Parameter		Standards & Level Perform					
General		Compliance with EN 501	21-3-2 Railway Applications				
EMI ₍₅₎	Conduction	EN 55032/11	With external components	Class A			
	Radiation	EN 33032/11	With external components	Class A			
	EN 55024	EN 55024					
	ESD	EN 61000-4-2 air ± 8kV, Contact ± 6kV		A			
	Radiated immunity	EN 61000-4-3 10V/m		Α			
EMS ₍₅₎	Fast transient		EN 61000-4-4 ±2kV				
	Surge	EN 61000-4-5 ±2kV		Α			
	Conducted immunity	E	N 61000-4-6 10Vrms	Α			
	PFMF	EN 61000-4-8 100A/m, 1000A/m For 1 Second		Α			

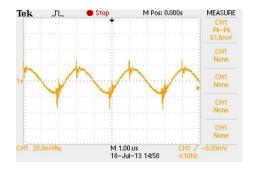
Environmental Specifications						
December	On different Model	Min.	Ma	11-2		
Parameter	Conditions / Model		without Heatsink	with Heatsink	Unit	
	MTQZ50-72S12		72	75		
Operating Ambient Temperature Range	MTQZ50-72S15, MTQZ50-110S15		12	75		
Nominal Vin, Load 100% Inom.	MTQZ50-72S24	-40	68	74	°C	
(for Power Derating see relative Derating Curves)	MTQZ50-110S12, MTQZ50-110S24		00	71		
	MTQZ50-72S05, MTQZ50-110S05		63	67		
	20LFM Convection without Heatsink	7.5		-		
	20LFM Convection with Heatsink	6.8		-		
	100LFM Convection without Heatsink	6.1		-		
The second leave a decree	100LFM Convection with Heatsink	4.1		°C/W		
Thermal Impedance	200LFM Convection without Heatsink	5.3				
	200LFM Convection with Heatsink	3.3				
	400LFM Convection without Heatsink	3.9				
	400LFM Convection with Heatsink	2.2				
Base-plate Temperature Range		-40	+10	05	°C	
Over Temperature Protection (Base Plate)			+1	10	°C	
Storage Temperature Range		-50	+1:	25	°C	
Cooling	Compliance to	o IEC/EN 600	068-2-1			
Dry Heat	Compliance to	o IEC/EN 600	068-2-2			
Damp Heat	Compliance to IEC/EN 60068-2-30					
Shock & Vibration Test	Compliance to IEC/EN 61373					
Fire Protection Test	Compliance	ce to EN 4554	15-2			
Operating Humidity (non condensing)		5	9:	5	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C	


Date:2023-04-28 Rev:11 MTQZ50 Series – EC Notes 3

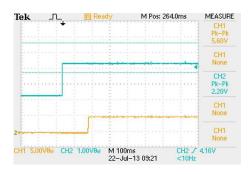
POWER FOR A BETTER FUTURE

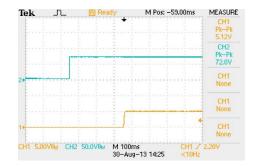

Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a $1\mu F$ MLCC and a $10\mu F$ Tantalum Capacitor.
- 4 Other input and output voltage may be available, please contact MINMAX.
- The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 It is necessary to parallel a capacitor across the input pins under normal operation. Minimum Capacitance: 68μF/200V.
- 7 Specifications are subject to change without notice.



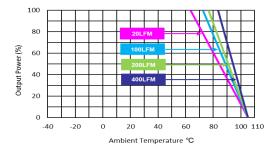
All test conditions are at 25°C The figures are identical for MTQZ50-72S05

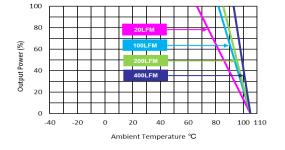



Tek

MEASURE

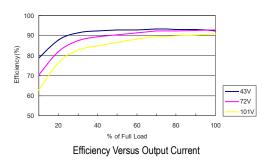
Typical Output Ripple and Noise. $V_{in} = V_{in\;nom}; \; Full\;Load; \; T_A$

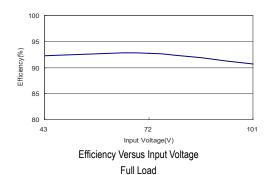

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$



ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

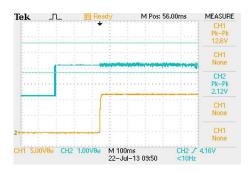
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

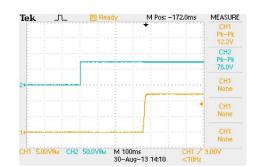



Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

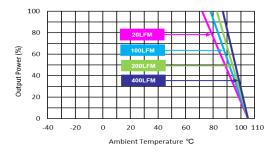
Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$ (with heatsink)

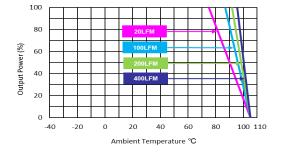
All test conditions are at 25°C The figures are identical for MTQZ50-72S12





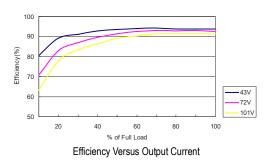
Typical Output Ripple and Noise. $V_{in} = V_{in nom}$; Full Load;

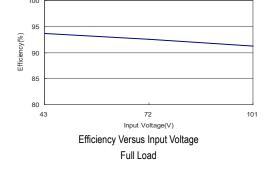

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; $V_{in=}=V_{in\,nom}$

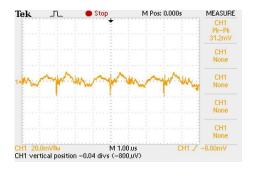


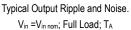
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

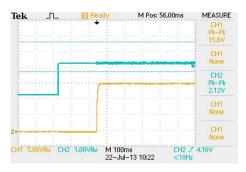


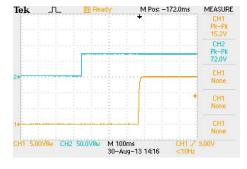

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

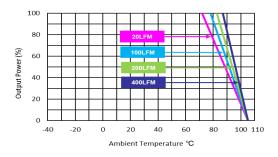

Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$ (with heatsink)

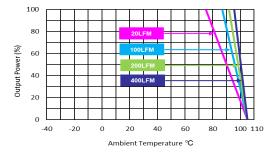


All test conditions are at 25°C The figures are identical for MTQZ50-72S15

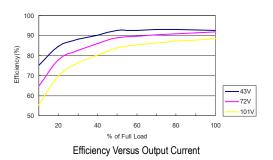


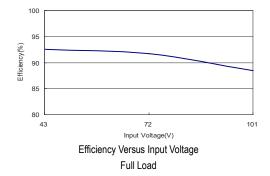



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in=}} = V_{\text{in nom}}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

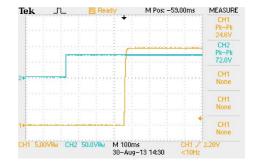

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$



Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$ (with heatsink)

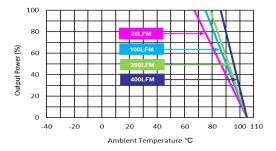
All test conditions are at 25°C The figures are identical for MTQZ50-72S24

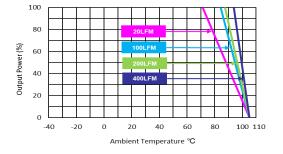



Tek

MEASURE

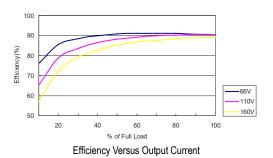
Typical Output Ripple and Noise. $V_{in} = V_{in\;nom}; \; Full\;Load; \; T_A$

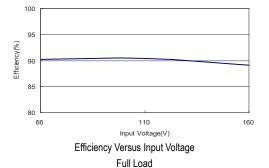

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in=}=V_{in\,nom}$



ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

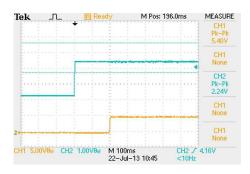
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$



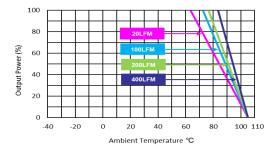

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

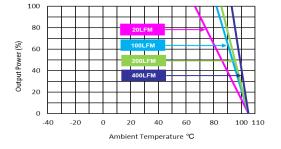
Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)

All test conditions are at 25°C The figures are identical for MTQZ50-110S05



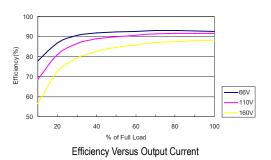
Typical Output Ripple and Noise. $V_{in} = V_{in nom}$; Full Load; T_A

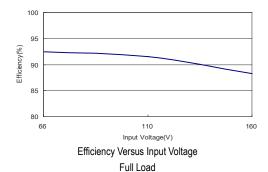

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in=}=V_{in\,nom}$

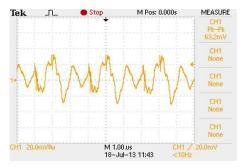


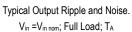
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

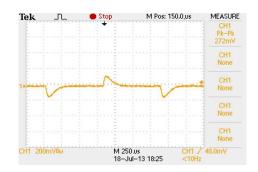
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

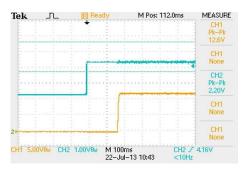


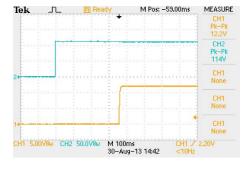

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

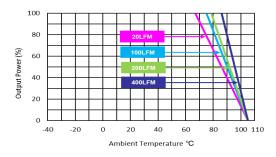

Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$ (with heatsink)

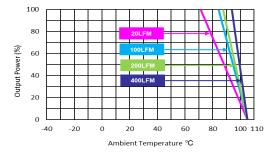



All test conditions are at 25°C The figures are identical for MTQZ50-110S12

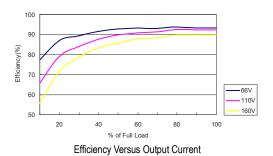


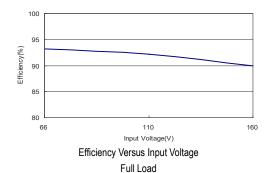


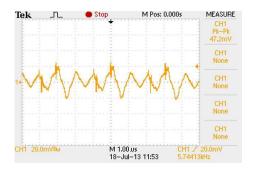

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in=}} = V_{\text{in nom}}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; \text{Load}$

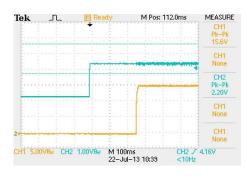
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

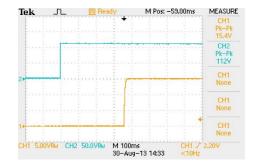

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$




Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{with heatsink})$

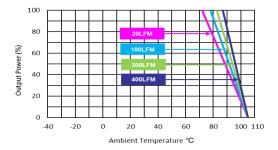
All test conditions are at 25°C The figures are identical for MTQZ50-110S15

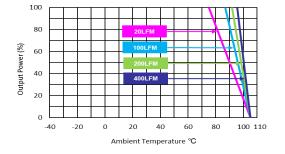

Tek


MEASURE

M Pos: 150.0,us

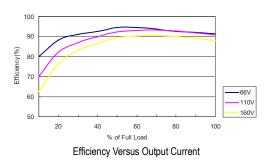
Typical Output Ripple and Noise. V_{in} = $V_{in nom}$; Full Load; T_A

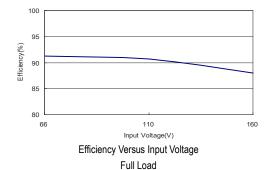

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in=}=V_{in\,nom}$

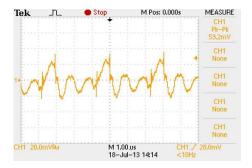


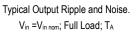
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

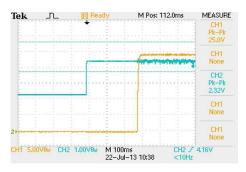


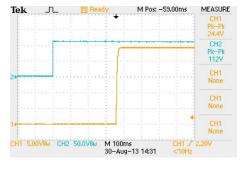

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

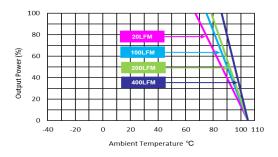

Derating Output Power Versus Ambient Temperature and Airflow Vin=Vin nom (with heatsink)

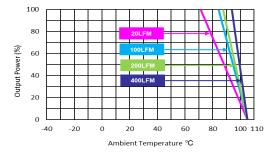


All test conditions are at 25°C The figures are identical for MTQZ50-110S24






Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

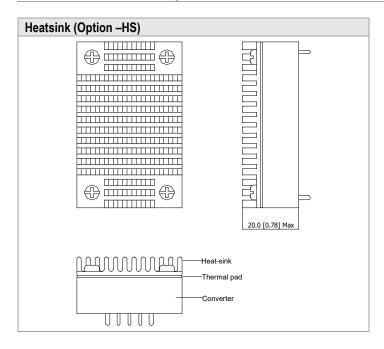

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \text{ ; Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{without heatsink})$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}} \, (\text{with heatsink})$

Package Specifications Mechanical Dimensions 57.9 [2.28] Mounting Inserts M3x0.5 Through 4pl. 50.80 [2.00] \oplus Ф 26.20 [1.03] 15.24 [0.60] 15.24 [0.60] 7 🕈 8 (7.62 [0.30] \oplus **BOTTOM VIEW** 47.20 [1.86] 4.10 [0.16] min 12.7 [0.50]

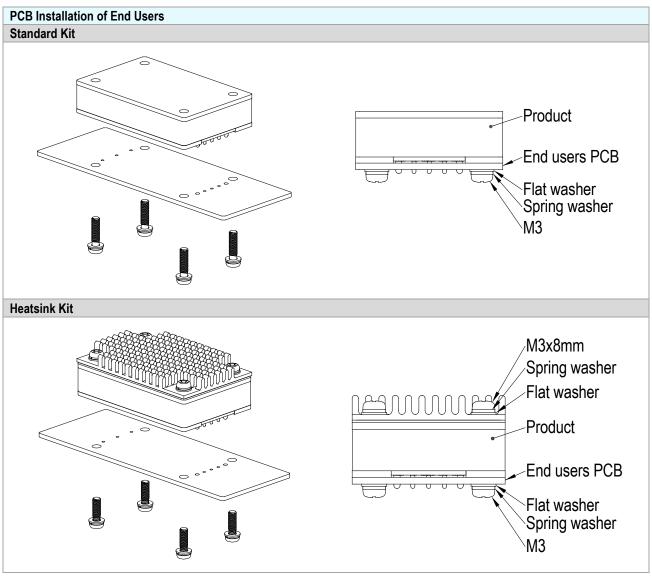

Pin Con	Pin Connections						
Pin	Function	Diameter mm (inches)					
1	+Vin	Ø 1.0 [0.04]					
2	Remote On/Off	Ø 1.0 [0.04]					
3	-Vin	Ø 1.0 [0.04]					
4	-Vout	Ø 1.5 [0.06]					
5	* -Sense	Ø 1.0 [0.04]					
6	Trim	Ø 1.0 [0.04]					
7	* +Sense	Ø 1.0 [0.04]					
8	+Vout	Ø 1.5 [0.06]					

- * If remote sense not used the +sense should be connected to +output and -sense should be connected to -output Maximum output deviation is 10% inclusive of trim
- * Please refer to page 6 for pcb installation of power module according to the pictures of standard kit or heatsink kit from and users
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

➤ Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

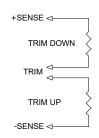
Physical Characteristics Case Size 57.9x36.8x12.7 mm (2.28x1.45x0.50 inches) Case Material Metal With Non-Conductive Baseplate Top Side Base Material Aluminum Plate Non-conductive Black Plastic Base Plate Bottom Side Base Material Pin Material (Input) Copper Alloy Pin Material (Output) Copper Potting Material Epoxy (UL94-V0) Weight 61g


Physical Characteristics
Heatsink Material : Aluminum

Finish : Black Anodized Coating

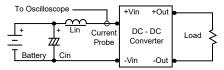

Weight : 13g

- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

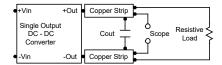

- 1. Please evaluates mechanical stress (vibration, shock, bump) during field applications.
- $2. \ It has to equip with installation kit if escess the guaranteed specifications, please contacts MINMAX for detail information.$
- 3. Applied torque per screw 9 kgf.cm min.

External Output Trimming

Output can be externally trimmed by using the method shown below


	MTQZ50	-XXS05 MTQZ50-XXS12 MTQZ50-XXS15 MTQZ50-XX		MTQZ50-XXS12 MTQZ50-XXS15		-XXS24		
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up
(%)	$(k\Omega)$	$(k\Omega)$	(kΩ)	$(k\Omega)$	(kΩ)	$(k\Omega)$	(kΩ)	$(k\Omega)$
1	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14
2	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02
3	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31
4	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46
5	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55
6	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61
7	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79
8	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18
9	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70
10	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

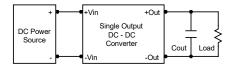
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Overload Protection

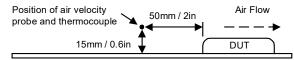

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.

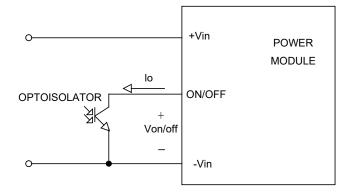


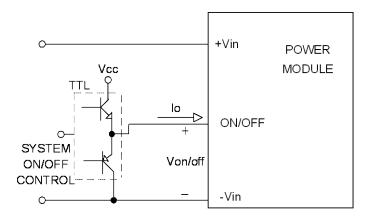
Maximum Capacitive Load

The MTQZ50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

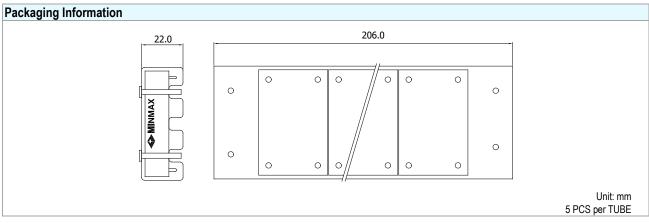
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

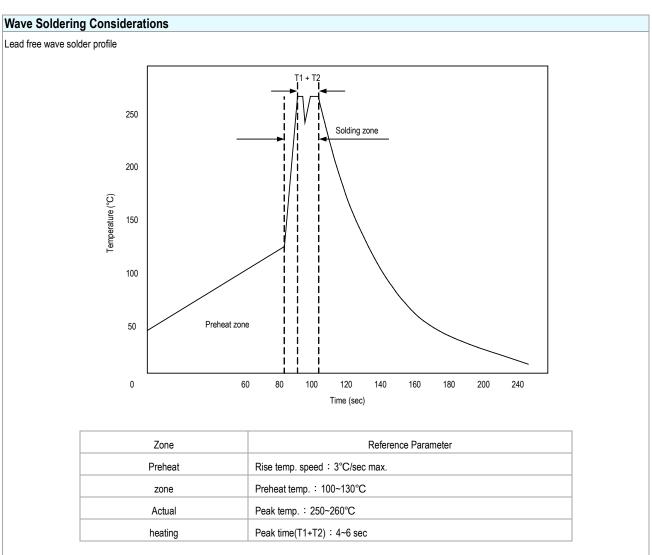



Remote On/Off Implementation

With suffix-RC, the positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Remote ON/OFF implementation




Isolated-Closure Remote ON/OFF

Level Control Using TTL Output

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400°C

Part Number Structure Ζ 50 S 05 М TQ 72 Package Type Application Output Power Input Voltage Range **Output Quantity** Output Voltage Quarter Brick Railway VDC 50 Watt 72: 43 ~ 101 VDC Single 05: 110: 66 160 VDC 12: 12 VDC Wide 2:1 VDC 15: 15 Input Voltage Range VDC 24:

MTBF and Reliability

The MTBF of MTQZ50 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MTQZ50-72S05	315,900	
MTQZ50-72S12	482,900	
MTQZ50-72S15	460,200	
MTQZ50-72S24	420,100	Hours
MTQZ50-110S05	314,900	nouis
MTQZ50-110S12	431,500	
MTQZ50-110S15	456,100	
MTQZ50-110S24	414,200	