

MSPU01H Series EC Note

DC-DC CONVERTER 1W, SMD Package

Features

- Industrial SMD Package
- Unregulated Output Voltage
- I/O Isolation 3000 VDC
- Operating Ambient Temp. Range -40°C to +85°C
- Overload and Short Circuit Protection
- Cleaning-washable Process Available(option)
- Qualified for Lead-free Reflow Solder Process
- According to IPC/JEDEC J-STD-020D.1 Tape & Reel Package Available
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MSPU01H series is a range of isolated 1W DC-DC converter modules in SMD package which feature a high I/O isolation voltage rated for 3000VDC and there are 21 models available for 3.3, 5 or 12VDC input. Advanced circuit topology provides continuous overload, short circuit protection and a high efficiency up to 84% which allows operating ambient temperatures range of -40°C to +75°C without power derating. These converters offer a cost-effective solution for all applications where a high I/O isolation and fault condition protection are required.

Table of contents

Model Selection Guide	
Input Specifications	
Output Specifications	
General Specifications	
EMC Specifications	 tions P28
Environmental Specifications	
Characteristic Curves	
Package Specifications	

Date:2024-02-26 Rev:4

Model	Input	Output	Out	put	Inp	out	Load	Max. capacitive	Efficiency
Number	Voltage	Voltage	Cur	rent	Curi	rent	Regulation	Load	(typ.)
	(Range)	•	Max.	Min.	@Max. Load	@No Load		-	@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%
MSPU01-033S033H		3.3	300	6	390		15		77
MSPU01-033S05H		5	200	4	384		12	000	79
MSPU01-033S12H		12	84	1.68	377		10	220	81
MSPU01-033S15H	3.3	15	67	1.34	381	45	9		80
MSPU01-033D05H	(2.97 ~ 3.63)	±5	±100	±2	384		12		79
MSPU01-033D12H		±12	±42	±0.84	377		9	100#	81
MSPU01-033D15H		±15	±33	±0.66	375		9		80
MSPU01-05S033H		3.3	300	6	251		12		79
MSPU01-05S05H		5	200	4	244		11	000	82
MSPU01-05S12H	_	12	84	1.68	240		7	220	84
MSPU01-05S15H	5	15	67	1.34	236	30	7		85
MSPU01-05D05H	(4.5 ~ 5.5)	±5	±100	±2	244		11		82
MSPU01-05D12H		±12	±42	±0.84	240		7	100#	84
MSPU01-05D15H		±15	±33	±0.66	236		7		84
MSPU01-12S033H		3.3	300	6	106		9		78
MSPU01-12S05H		5	200	4	103		8		81
MSPU01-12S12H	40	12	84	1.68	101		6	220	83
MSPU01-12S15H	12	15	67	1.34	101	17	6		83
MSPU01-12D05H	(10.8 ~ 13.2)	±5	±100	±2	102		7		82
MSPU01-12D12H		±12	±42	±0.84	101		6	100#	83
MSPU01-12D15H		±15	±33	±0.66	99		6		83

* Min. Output Current for Lower Load Regulation

For each output

Input Specifications

input opcontoutions					
Parameter	Model	Min.	Тур.	Max.	Unit
	3.3V Input Models	2.97	3.3	3.63	
Input Voltage Range	5V Input Models	4.5	5	5.5	
	12V Input Models	10.8	12	13.2	
	3.3V Input Models	-0.7		6	VDC
Input Surge Voltage (1 sec. max.)	5V Input Models	-0.7		9	
	12V Input Models	-0.7		18	
Input Filter	All Models		Internal Ca	pacitor Type	

Output Specifications

e alpat epeemeanene					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±3.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%
Load Regulation	lo=10% to 100%		See Model Se	election Guide	
Ripple & Noise	0-20 MHz Bandwidth		65	100	mV _{P-P}
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Normal Vin at 25°C		160		%
Short Circuit Protection		C	ontinuous, Aut	omatic Recove	ery

Date:2024-02-26 Rev:4

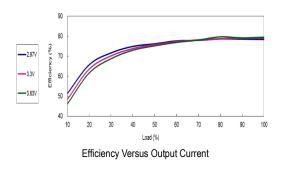
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	3000			VDC
I/O Isolation Resistance	500 VDC	10			GΩ
I/O Isolation Capacitance	100kHz, 1V		20		pF
Switching Frequency		50	80	110	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,657,000			Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Lev	/el 2	
Cofet Annuals	UL/cUL 60950-1 recognition(UL ce	ertificate), IEC/EN	60950-1(CB	-report)	
Safety Approvals	UL/cUL 62368-1 recognition(UL ce	ertificate), IEC/EN	62368-1(CB	-report)	

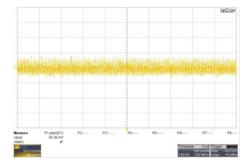
EMC Specifications

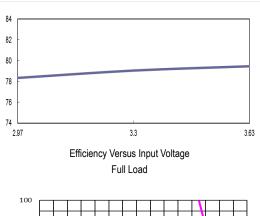
Parameter		Standards & Lev	el	Performance
EMI	Conduction	EN 55032	With outernal components	Class A
EMI ₍₅₎	Radiation	EN 35032	With external components	Class A
	EN 55024			
	ESD	EN61000-4-2 A	ir ± 8kV , Contact ± 6kV	A
	Radiated immunity	EN 61	1000-4-3 10V/m	A
EMS(5)	Fast transient	EN 6	1000-4-4 ±2kV	A
	Surge	EN 6	1000-4-5 ±1kV	A
	Conducted immunity	EN 61	000-4-6 10Vrms	A
	PFMF	EN 6	1000-4-8 3A/m	A

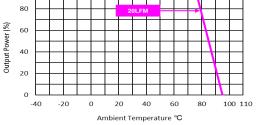
Environmental Specifications

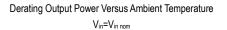
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C
Case Temperature		+95	°C
Storage Temperature Range	-50	+125	°C
Humidity (non condensing)		95	% rel. H
Lead-free Reflow Solder Process	IPC/JI	EDEC J-STD-()20D.1


Notes

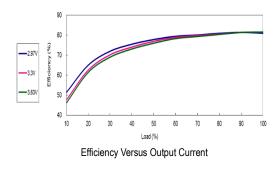

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a fast blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- 7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

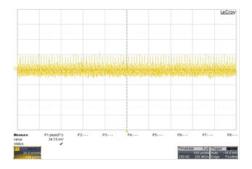

Characteristic Curves

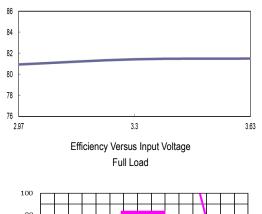

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033S033H $\,$

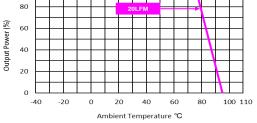


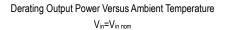
Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load



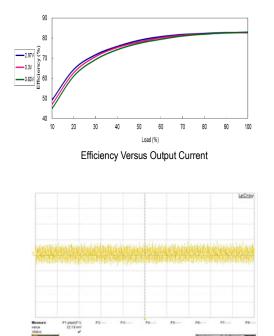

Date:2024-02-26 Rev:4


Characteristic Curves

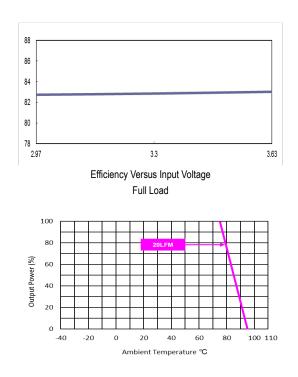

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033S05H $\,$



Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$



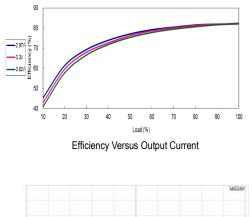
Date:2024-02-26 Rev:4



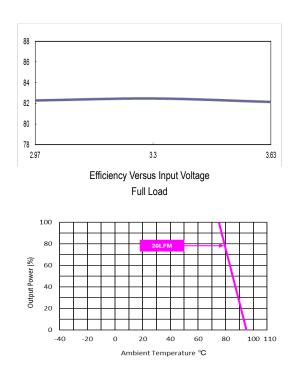
Characteristic Curves

All test conditions are at 25°C The figures are identical for MSPU01-033S12H

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

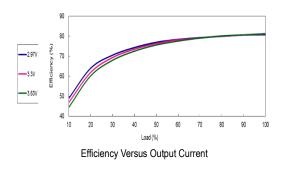

Derating Output Power Versus Ambient Temperature V_in=V_in nom

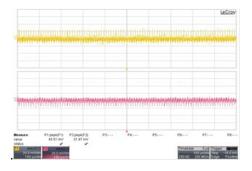

Date:2024-02-26 Rev:4

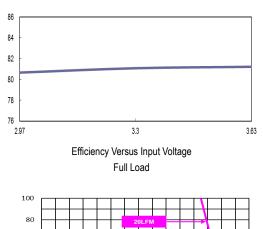

Characteristic Curves

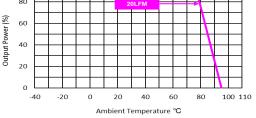
All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033S15H $\,$

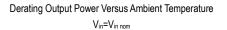
Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load


Derating Output Power Versus Ambient Temperature V_in=V_in nom

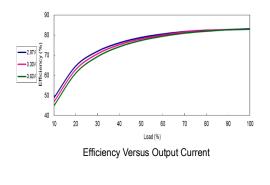

Date:2024-02-26 Rev:4

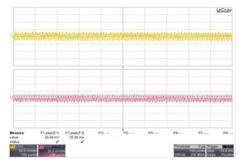

Characteristic Curves

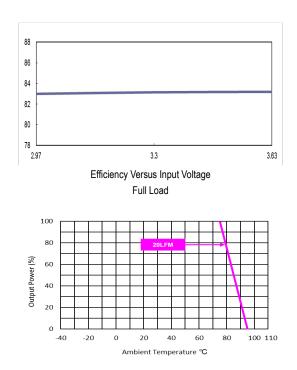

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033D05H $\,$



Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$

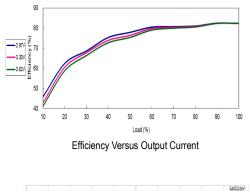


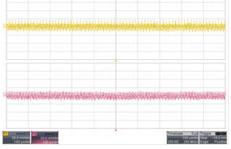

Date:2024-02-26 Rev:4

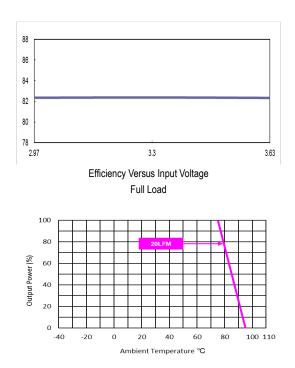

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033D12H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Derating Output Power Versus Ambient Temperature V_in=V_in nom

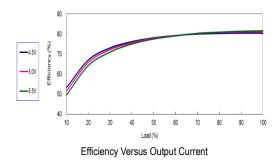

Date:2024-02-26 Rev:4

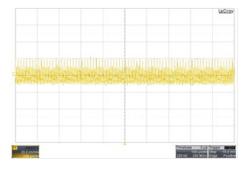

Characteristic Curves

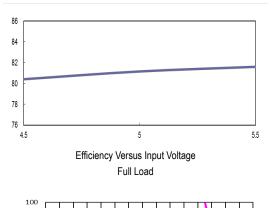
All test conditions are at 25°C $\,$ The figures are identical for MSPU01-033D15H $\,$

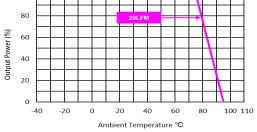
Typical Output Ripple and Noise Vin=Vin nom ; Full Load

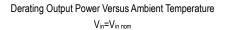
Derating Output Power Versus Ambient Temperature $V_{\text{in}} {=} V_{\text{in nom}}$


Date:2024-02-26 Rev:4

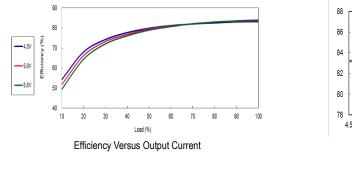

MSPU01H Series - EC Notes 10

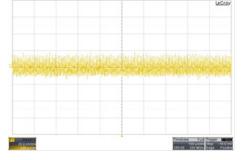

Characteristic Curves

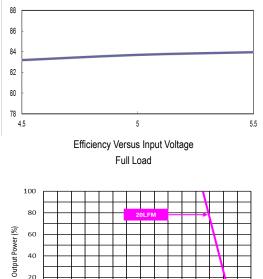

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05S033H $\,$

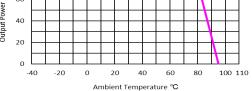


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load



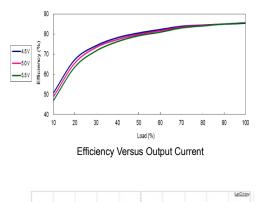

Date:2024-02-26 Rev:4

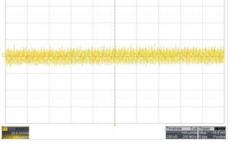

Characteristic Curves

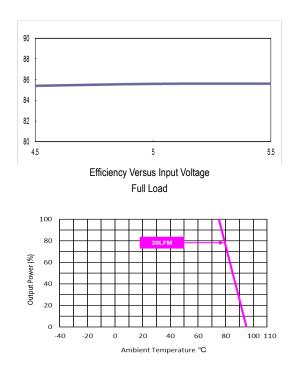

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05S05H $\,$

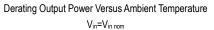
Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

Derating Output Power Versus Ambient Temperature V_in=V_in nom

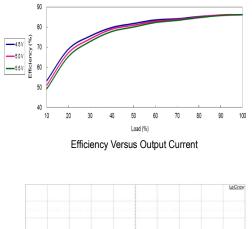

Date:2024-02-26 Rev:4

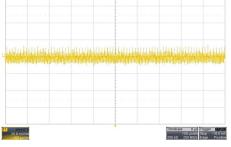

MSPU01H Series – EC Notes 12

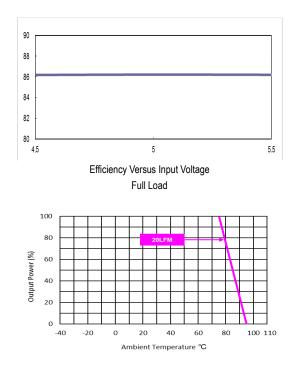

Characteristic Curves

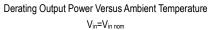

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05S12H $\,$

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

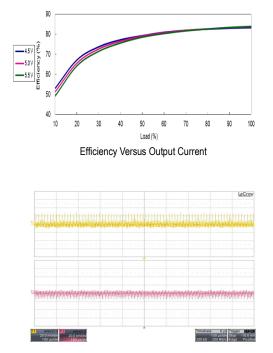



Date:2024-02-26 Rev:4

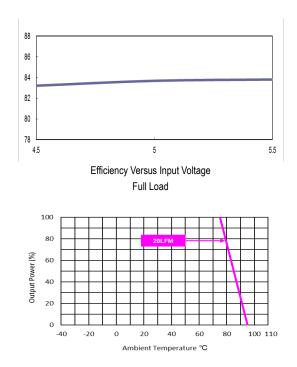

Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05S15H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Date:2024-02-26 Rev:4

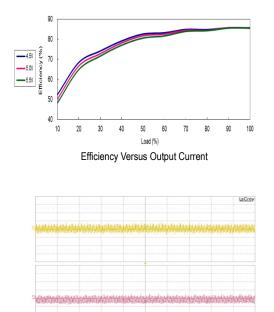
MSPU01H Series - EC Notes 14



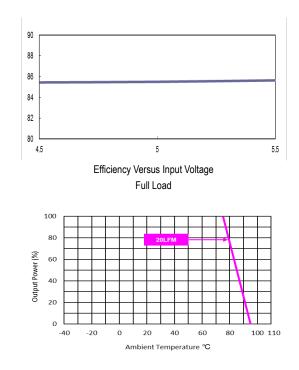
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05D05H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Derating Output Power Versus Ambient Temperature V_in=V_in nom

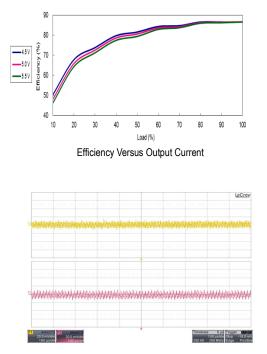
Date:2024-02-26 Rev:4



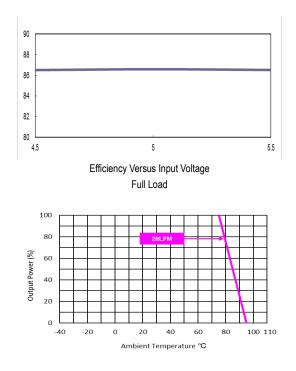

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05D12H $\,$

Typical Output Ripple and Noise Vin=Vin nom ; Full Load 0 µs Trigger 10 µs/div Stop 50 MS/s Erine



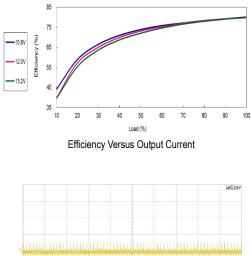
Date:2024-02-26 Rev:4

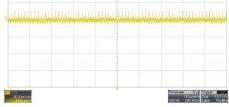


Characteristic Curves

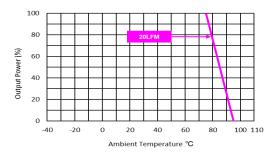
All test conditions are at 25°C $\,$ The figures are identical for MSPU01-05D15H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Derating Output Power Versus Ambient Temperature V_in=V_in nom

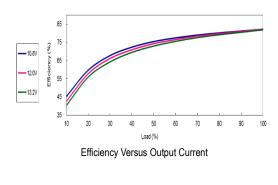

Date:2024-02-26 Rev:4

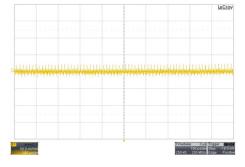
Characteristic Curves

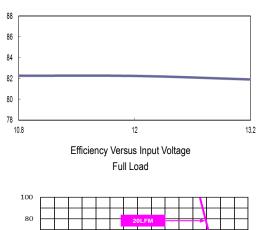

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12S033H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$

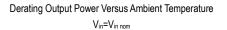
Derating Output Power Versus Ambient Temperature $V_{\text{in}} {=} V_{\text{in nom}}$


Date:2024-02-26 Rev:4

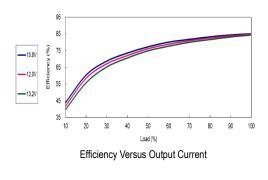

MSPU01H Series - EC Notes 18

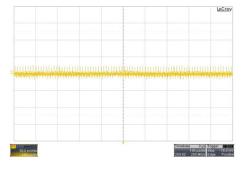

Characteristic Curves

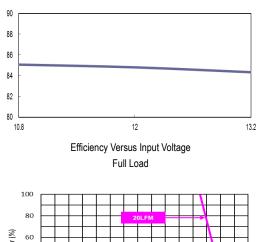

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12S05H $\,$

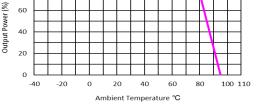


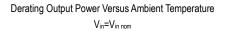
Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$



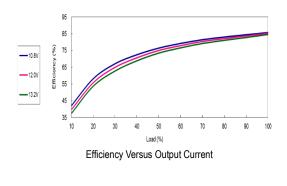

Date:2024-02-26 Rev:4

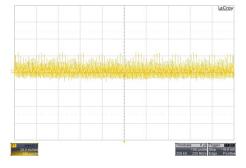

Characteristic Curves

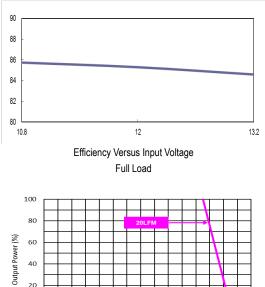

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12S12H $\,$

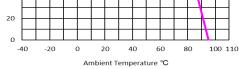


Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Date:2024-02-26 Rev:4

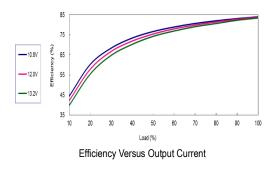

MSPU01H Series - EC Notes 20

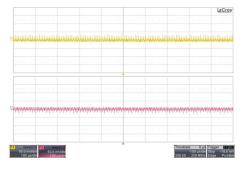

Characteristic Curves

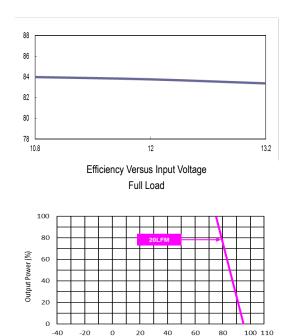

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12S15H $\,$

Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Derating Output Power Versus Ambient Temperature V_in=V_in nom


Date:2024-02-26 Rev:4

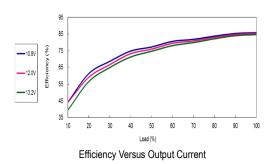

MSPU01H Series - EC Notes 21

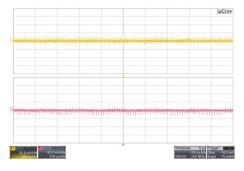

Characteristic Curves

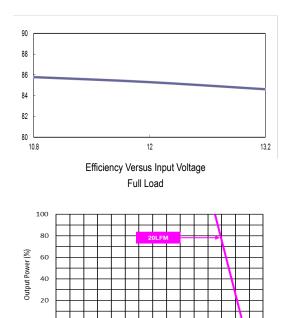
All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12D05H $\,$

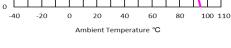
Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Derating Output Power Versus Ambient Temperature V_in=V_in nom


Ambient Temperature °C

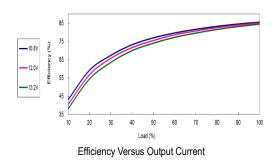

Date:2024-02-26 Rev:4

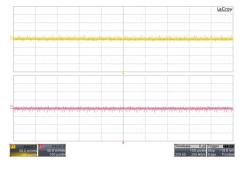

Characteristic Curves

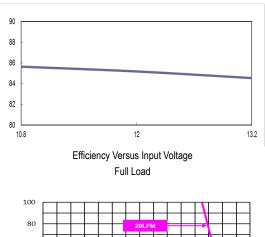

All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12D12H $\,$

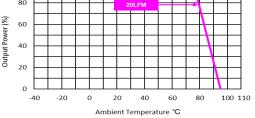
Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$

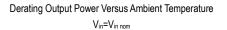
Derating Output Power Versus Ambient Temperature V_in=V_in nom


Date:2024-02-26 Rev:4

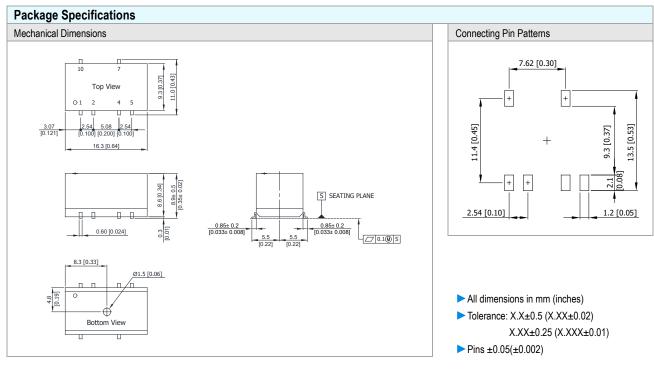

MSPU01H Series - EC Notes 23


Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MSPU01-12D15H $\,$



Typical Output Ripple and Noise $V_{\text{in}}{=}V_{\text{in nom}}\,;\,\text{Full Load}$



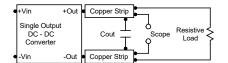
Date:2024-02-26 Rev:4

MSPU01H Series - EC Notes 24

Pin Conn	ections	
Pin	Single Output	Dual Output
1	-Vin	-Vin
2	+Vin	+Vin
3	No Pin	No Pin
4	-Vout	Common
5	No Pin	-Vout
6	No Pin	No Pin
7	+Vout	+Vout
8	No Pin	No Pin
9	No Pin	No Pin
10	NC	NC

Physical Characteristics	3
Case Size	: 16.3x9.3x8.6 mm (0.64x0.37x0.34 inches)
Case Material	: Plastic resin (flammability to UL 94V-0 rated)
Pin Material	: Phosphor Bronze
Weight	: 1.9g

NC: No Connection

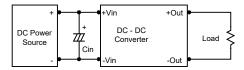

Date:2024-02-26 Rev:4

Test Setup

Peak-to-Peak Output Noise Measurement Test

Cout uses a 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

+Vin	+Out	Copper Strip
Dual Output DC - DC Converter	Com.	Cout Scope Copper Strip Load
-Vin	-Out	Cout Scope


Technical Notes

Overload Protection

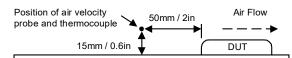
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

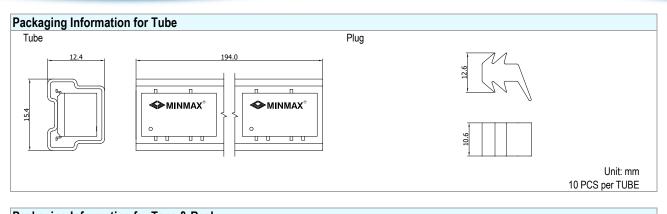
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for all the devices.

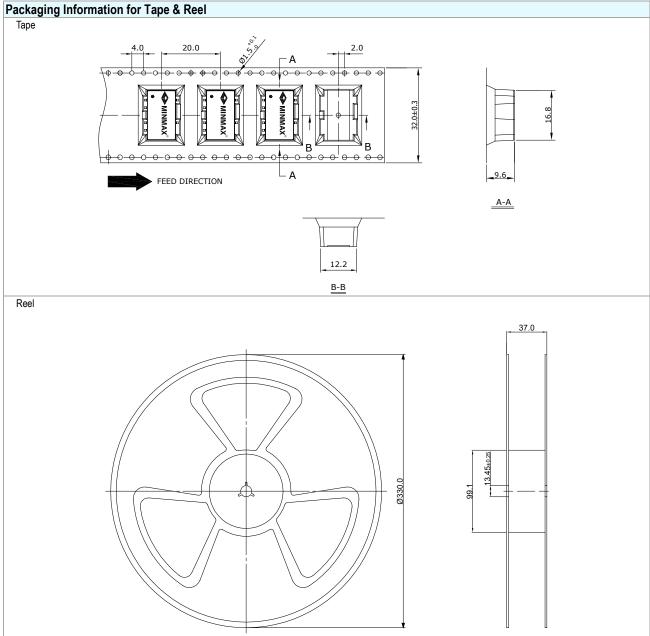
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



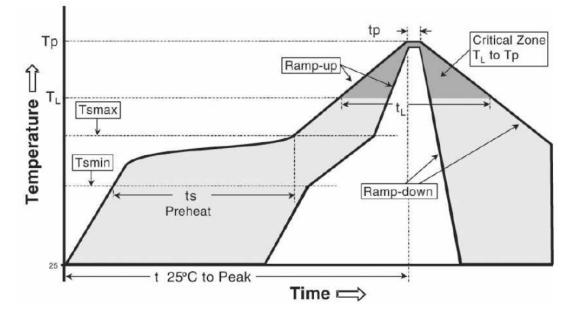
Maximum Capacitive Load


The MSPU01H series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	300


Date:2024-02-26 Rev:4

Soldering and Reflow Considerations

Profile	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate(Ts max. To Tp)	3°C/second max.	3°C/second max.
Preheat		
· Temperature Min (Ts _{min.})	100°C	150°C
Temperature Max (Ts _{max.})	150°C	200°C
Time (Ts _{min} to Ts _{max}) (ts)	60~120 seconds	60~180 seconds
Time maintained above:		
· Temperature (T _L)	183°C	217°C
· Time (t∟)	60~150 seconds	60~150 seconds
Peak Temperature (Tp)	See Table 4-1	See Table 4-2
Time within 5°C of actual Peak	10~30 seconds	20~40 seconds
Temperature (tp) ²		
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5°C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

Table 4-1 SnPb Eutectic Process-Classification Temperatures (T_c)

	Volume mm ³	Volume mm ³
Package Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 4-2 Pb-Free Process-Classification Temperatures (T_c)

	Volume mm ³	Volume mm ³	Volume mm ³		
Package Thickness	<350	350-2000			
<1.6mm	260°C	260°C	260°C		
1.6mm-2.5mm	260°C	250°C	245°C		
>2.5mm	250°C	245°C	245°C		

Date:2024-02-26 Rev:4

Part	Number Stru	cture													
M	S	PU	01	-			033				S		033		н
	Package Type	Protection	Output Power		I	nput Vo	oltag	e Rang	e	Outpu	t Quantity	Out	put Vo	Itage	I/O Isolation Voltage
	SMD-10	Overload Protection	1 Watt		033:	2.97	~	3.63	VDC	S:	Single	033:	3.3	VDC	3000 VDC
		Short Circuit Protection			05:	4.5	~	5.5	VDC	D:	Dual	05:	5	VDC	
		±10% Input Range			12:	10.8	~	13.2	VDC			12:	12	VDC	
												15:	15	VDC	
		Output Regulation													
		Unregulated													

MTBF and Reliability

The MTBF of MSPU01H series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MSPU01-033S033H	5,521,368	
MSPU01-033S05H	5,692,507	
MSPU01-033S12H	5,522,729	
MSPU01-033S15H	4,684,522	
MSPU01-033D05H	4,441,845	
MSPU01-033D12H	4,414,427	
MSPU01-033D15H	3,656,502	
MSPU01-05S033H	5,898,810	
MSPU01-05S05H	6,359,103	
MSPU01-05S12H	5,866,320	
MSPU01-05S15H	5,579,268	Hours
MSPU01-05D05H	4,978,094	
MSPU01-05D12H	4,999,764	
MSPU01-05D15H	4,789,736	
MSPU01-12S033H	3,691,256	
MSPU01-12S05H	6,234,986	
MSPU01-12S12H	6,709,030	
MSPU01-12S15H	6,315,361	
MSPU01-12D05H	4,901,709	
MSPU01-12D12H	5,207,963	
MSPU01-12D15H	4,612,281	

Date:2024-02-26 Rev:4