

MRZI75 Series EC Note

DC-DC CONVERTER 75W, Reinforced Insulation, Railway Certified

Features

- Industrial Standard Quarter Brick Package
- ► Ultra-wide Input Range 36-160VDC
- ► Excellent Efficiency up to 91%
- ► I/O Isolation 2000VAC with Reinforced Insulation
- ▶ Operating Baseplate Temp. Range -40°C to +105°C
- ▶ Temperature Cycle Test (TCT) more than 1000 Cycles Passed
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim, Output Sense
- ▶ Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking (Pending)

Applications

- ➤ Distributed power architectures
- Workstations
- ► Computer equipment
- ➤ Communications equipment

Product Overview

The MINMAX MRZI75 series is a new generation of high-performance 75W isolated DC-DC converters in a quarter-brick package, specifically designed for railway applications. It features a wide input range of 36-160 VDC and offers stable output voltage options of 5, 12, 15, 24, and 54 VDC (suitable for PoE applications), providing a range of choices for various railway needs.

With its advanced circuit topology, the MRZI75 series delivers an impressive efficiency of up to 91%, enabling baseplate temperatures to reach up to 105°C. The series also provides high I/O isolation of up to 2000VAC with reinforced insulation, designed to endure harsh environmental conditions.

Key features include protection against under-voltage, over-voltage, over-temperature, and short circuits. It also supports remote On/Off control (with both positive and negative logic), output voltage trimming, and output sensing for precise power regulation. Notably, the MRZI75 series has passed the Temperature Cycle Test (TCT) with over 1000 cycles, ensuring enhanced reliability in extreme operating conditions.

The MRZI75 series is certified to the railway standard EN 50155 and the EMC standard EN 50121-3-2, meeting stringent safety and environmental requirements for railway use. Additionally, it complies with the EN 45545-2 fire protection standard, ensuring safety during railway and railroad vehicle operations.

This series is ideal for a variety of railway applications, such as traction control systems, onboard lighting, communication systems, surveillance equipment, and HVAC systems, providing reliable power conversion in demanding environments.

Table of contents

Model Selection Guide	P2 Recommended Pad Layout	P22
Input Specifications	P2 External Output Trimming	P23
Output Specifications	P2 Test Setup	P24
General Specifications	P3 Technical Notes	P24
Remote On/Off Control	P3 Railway EN 50155 Certified	P25
EMC Specifications	P3 Remote On/Off Implementation	P25
Environmental Specifications	P3 Packaging Information	P26
Characteristic Curves	P5 Wave Soldering Considerations	P27
Package SpecificationsP	20 Hand Welding Parameter	P27
HeatsinkP	21 Part Number Structure	P28
PCB Installation of End UsersP	22 MTBF and Reliability	P28

Model Selection Guid	е							
Model	Input	Output	Output	Inp	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	Α	mA(typ.)	mA(typ.)	VDC	μF	%
MRZI75-110S05		5	15	766	43	6.2	30000	89
MRZI75-110S12	440	12	6.25	749	43	15	5200	91
MRZI75-110S15	110 (36 ~ 160)	15	5	749	43	18	3300	91
MRZI75-110S24	(30 ~ 100)	24	3.125	758	43	30	1200	90
MRZI75-110S54		54	1.39	767	43	66	330	89

Input Specifications				
Parameter	Min.	Тур.	Max.	Unit
Input Surge Voltage (1000ms. max)	-0.7		200	
Start-up Threshold Voltage			36	VDC
Under Voltage Shutdown		32		
Input Filter	Internal Capacitor			

Output Specifications							
Parameter		Conditions				Max.	Unit
Output Voltage Setting Accuracy						±1.0	%
Line Regulation		Vin=Min. to Max. @	Full Load			±0.2	%
Load Regulation		Min. Load to Fu	ıll Load			±0.3	%
Min. Load			No minimum Load I	Requirement			
		5V, 12V, 15V Output	Measured with a 22uF/25V POS-CAP			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	24V Output	Measured with a 33uF/35V POLYMER			150	mV _{P-P}
		54V Output	Measured with a 1uF/100V MLCC			300	mV _{P-P}
Start Up Time (Power On)						70	ms
Transient Recovery Time		050/ 1 101 6			250		μS
Transient Response Deviation		25% Load Step C	nange (2)		±3	±5	%
Temperature Coefficient						±0.02	%/°C
Titus Ha / Danie Barra	0/ - (N	10.11)/-11	Other Models			±10	%
Trim Up / Down Range (8)	% of Nomina	% of Nominal Output Voltage 54V Output				+5 / -15	%
Over Load Protection		С	urrent Limitation at 150% ty	p. of lout max.	, Hiccup		
Short Circuit Protection		Conti	nuous, Automatic Recovery	(Hiccup Mode	e 0.3Hz typ.)		

Date:2025-01-13 Rev:1 MRZI75 Series – EC Notes 2

General Specificat	ions						
Pa	arameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage		Reinforced Insulation, Rated For 60 Seconds	2000			VAC	
Isolation Voltage	Input to case	Rated For 60 Seconds	1680			VAC	
	Output to case	Rated For 60 Seconds	500			VAC	
I/O Isolation Resistance		500 VDC	1000			MΩ	
I/O Isolation Capacitance	e	100kHz, 1V			2200	pF	
Cuitabia a Fasausaas		5V Output		185		kHz	
Switching Frequency		Other Models		214		kHz	
MTBF(calculated)	TBF(calculated) MIL-HDBK-217F@25°C Full Load, Ground Benign 642,314					Hours	
		EN 50155, IEC 60571					
Safety Standards		UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1					

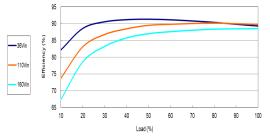
Remote On/	Off Control								
	Parameter		Conditions	Min.	Тур.	Max.	Unit		
Positive logic (Standard) Converter On Converter Off		Converter On	3.5V ~ 12V	or Open Circu	it				
		Converter Off	0V ~ 1.2V or Short Circuit						
Negative logic (Option) Converter On Converter Off		Converter On	0V ~ 1.2V or Short Circuit						
		Converter Off	3.5V ~ 12V or Open Circuit						
	Control Innuit Current	Converter On	Vctrl = 5.0V		0.5		mA		
Positive logic	Control Input Current	Converter Off	Vctrl = 0V		-0.5		mA		
Namatina lania	Control Innest Comment	Converter On	Vctrl = 0V		-0.5		mA		
Negative logic	Control Input Current	Converter Off	Vctrl = 5.0V		0.5		mA		
Control Common			Referenced to Negative Input						
Standby Input C	Current		Nominal Vin 3				mA		

EMC Specifications							
Parameter		Standards & Level					
General		Compliance with EN 50121-3-2 Ra	ailway Applications				
EMI	Conduction	EN 55032/11	With external components	Class A			
EMI ₍₅₎	Radiation	EN 55032/11	with external components	Class A			
	EN 55024, EN 55035						
	ESD	Direct discharge	Indirect discharge HCP & VCP				
	ESD	EN 61000-4-2 air ± 8kV, Contact ± 6kV	Contact ± 6kV	A			
FMC	Radiated immunity	EN 61000-4-3	10V/m	Α			
EMS ₍₅₎	Fast transient	EN 61000-4-4	±2kV	Α			
	Surge	EN 61000-4-5	±2kV	Α			
	Conducted immunity	EN 61000-4-6	10Vrms	Α			
	PFMF	EN 61000-4-8 30A/m	for Continuous	Α			

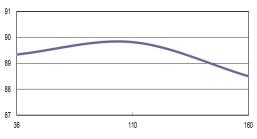
Environmental Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Baseplate Temperature Range		-40		+105	°C	
Over Temperature Protection (Baseplate)			+110		°C	
Storage Temperature Range		-50		+125	°C	
Cooling Test	Compliance to IEC/EN60068-2-1					
Dry Heat	Compliance to	IEC/EN60068	3-2-2			
Damp Heat	Compliance to	IEC/EN60068	-2-30			
Vibration and Shock/Bump	Compliance	to IEC/EN 613	373			
Operating Humidity (non condensing)			5	95	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)				260	°C	

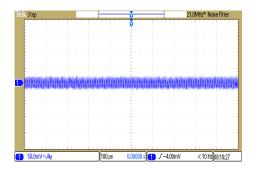
Date:2025-01-13 Rev:1 MRZI75 Series – EC Notes 3

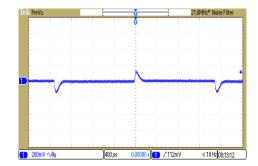
POWER FOR A BETTER FUTURE


Notes

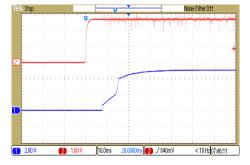
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Other input and output voltage may be available, please contact MINMAX.
- 4 It is necessary to parallel a capacitor across the input pins under normal operation. Minimum Capacitance: 150μF/ 250V KXJ.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 The hot-swap operation is extremely prohibited.
- 7 Over Current Protection (OCP) is built in and works over 130% of the rated current or higher. However, use in an over current situation over 4 seconds must be avoided whenever possible.
- 8 Do not exceed maximum power specification when adjusting output voltage. Please see the External Output Trimming table at page 23.
- 9 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Date: 2025-01-13 Rev: 1 MRZI75 Series – EC Notes 4


All test conditions are at 25° C The figures are identical for MRZI75-110S05

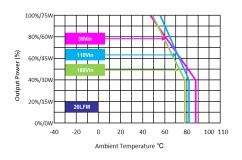

Efficiency Versus Output Current

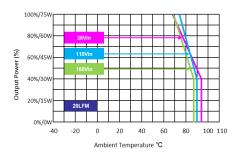
Efficiency Versus Input Voltage Full Load

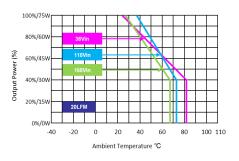

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

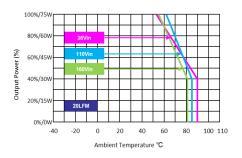
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

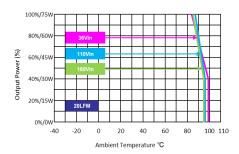

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}}\!=\!V_{\text{in nom}}\text{ ; Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

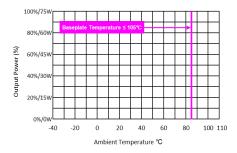

All test conditions are at 25°C The figures are identical for MRZI75-110S05 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

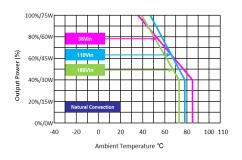

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

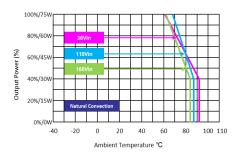

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

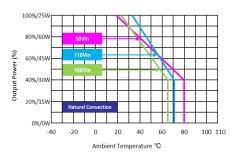
Derating Output Power Versus Ambient Temperature Vin=Vin nom (without heatsink)

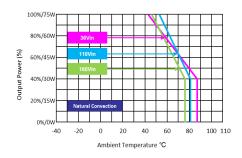


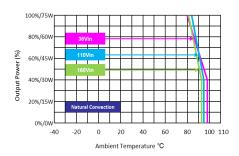
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



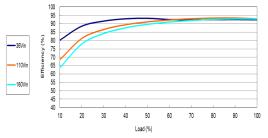

All test conditions are at 25°C The figures are identical for MRZI75-110S05 (continued)

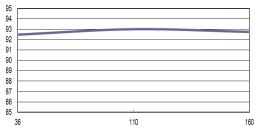

Derating Output Power Versus Ambient Temperature Vin=Vin nom

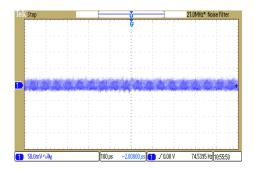

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

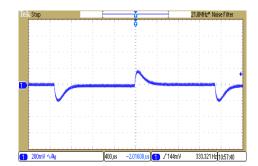

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

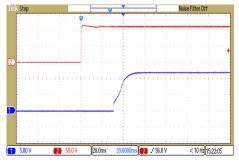
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

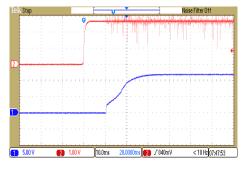

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)


Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

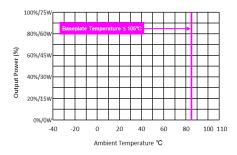

All test conditions are at 25°C $\,$ The figures are identical for MRZI75-110S12 $\,$

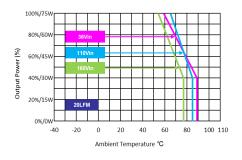

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

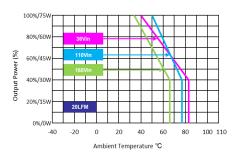

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

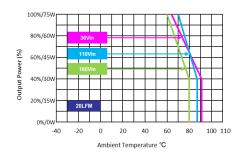
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

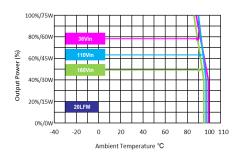

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}}\!=\!V_{\text{in nom}}\;; \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

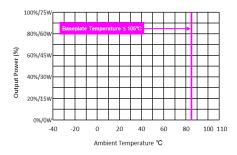
All test conditions are at 25°C The figures are identical for MRZI75-110S12 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

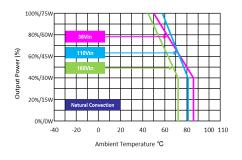

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

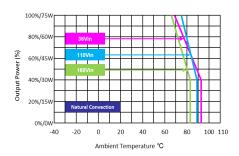

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

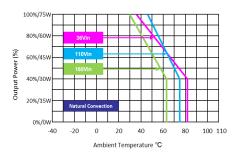
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

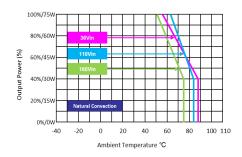


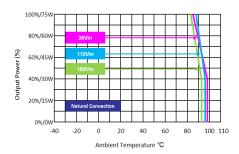
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



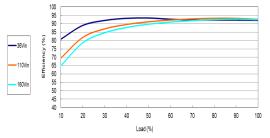

All test conditions are at 25°C The figures are identical for MRZI75-110S12 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

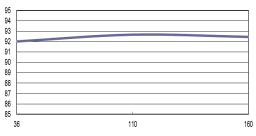

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

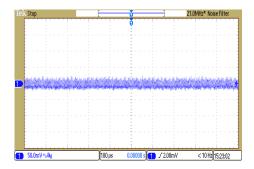

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

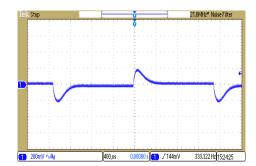
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

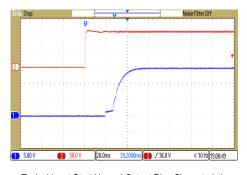


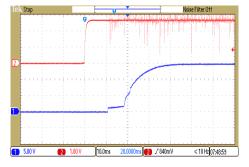
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)




All test conditions are at 25°C $\,$ The figures are identical for MRZI75-110S15 $\,$

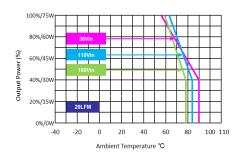

Efficiency Versus Output Current

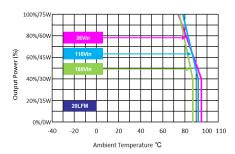

Efficiency Versus Input Voltage Full Load

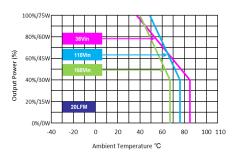

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

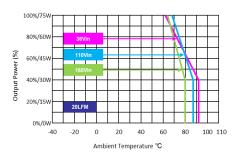
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

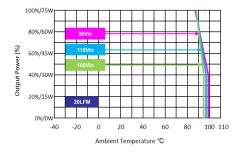

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

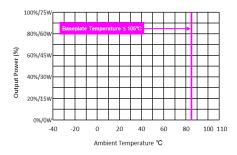

All test conditions are at 25°C The figures are identical for MRZI75-110S15 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

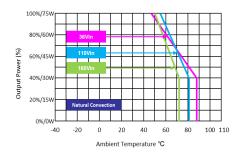

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

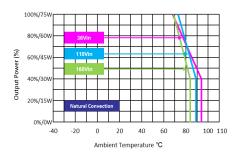

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

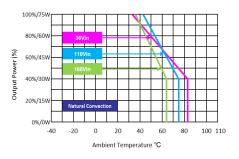
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

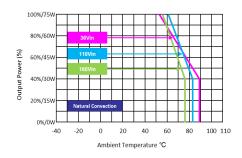


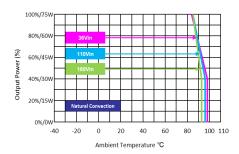
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



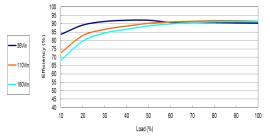

All test conditions are at 25°C The figures are identical for MRZI75-110S15 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

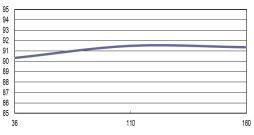

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

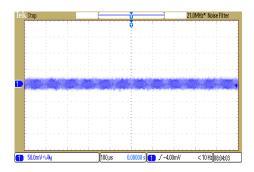

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

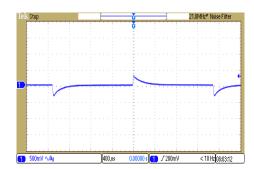
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

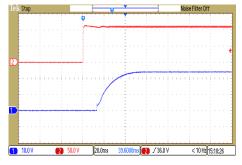


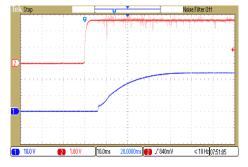
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



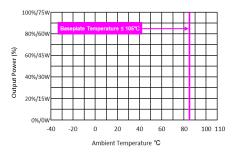

All test conditions are at 25° C The figures are identical for MRZI75-110S24

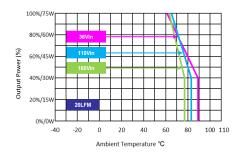

Efficiency Versus Output Current

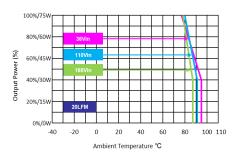

Efficiency Versus Input Voltage Full Load

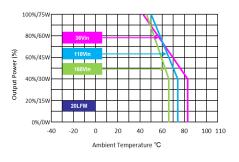

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

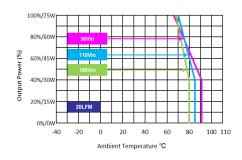
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

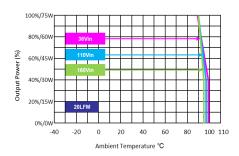

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}}\!=\!V_{\text{in nom}}\;; \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

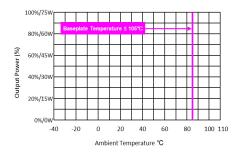

All test conditions are at 25°C The figures are identical for MRZI75-110S24 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

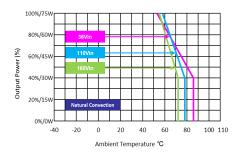

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

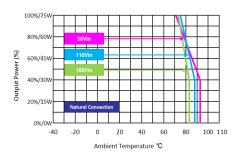

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

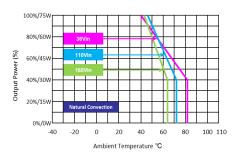
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

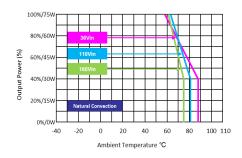


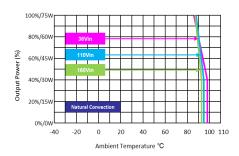
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



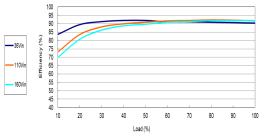

All test conditions are at 25°C The figures are identical for MRZI75-110S24 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom

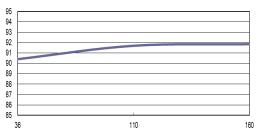

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

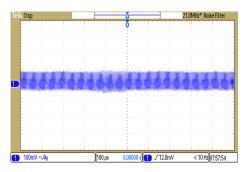

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

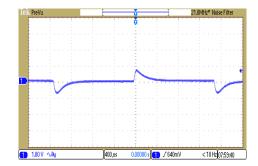
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

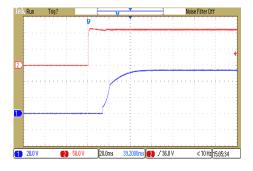


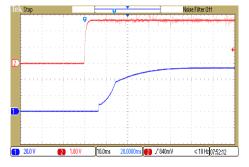
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)



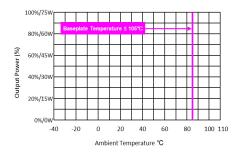

All test conditions are at 25°C The figures are identical for MRZI75-110S54

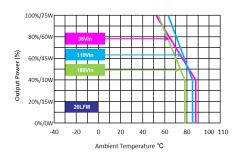

Efficiency Versus Output Current

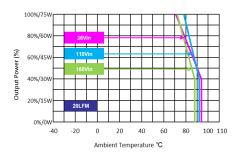

Efficiency Versus Input Voltage Full Load

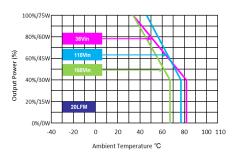

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

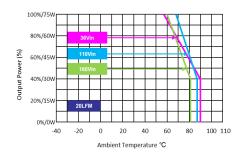
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

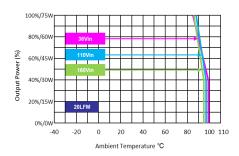

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; \; \text{Full Load} \;$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in=}} \! = \! V_{\text{in nom}} \; ; Full \; Load$

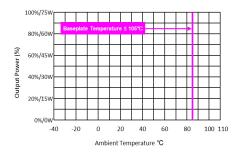

All test conditions are at 25°C The figures are identical for MRZI75-110S54 (continued)

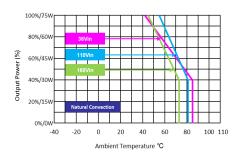

Derating Output Power Versus Ambient Temperature Vin=Vin nom

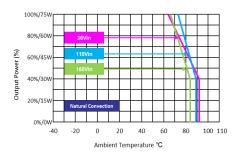

Derating Output Power Versus Ambient Temperature (with HS5 heatsink)

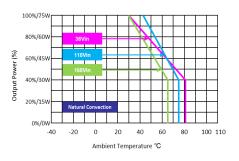

Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

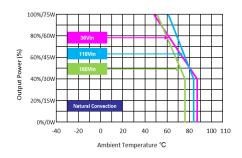
Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

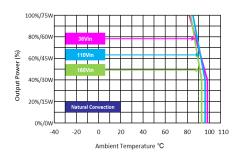

Derating Output Power Versus Ambient Temperature (with HS6 heatsink)


Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))


All test conditions are at 25°C The figures are identical for MRZI75-110S54 (continued)


Derating Output Power Versus Ambient Temperature Vin=Vin nom


Derating Output Power Versus Ambient Temperature (with HS5 heatsink)


Derating Output Power Versus Ambient Temperature (with HS7 heatsink)

Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom} (without heatsink)

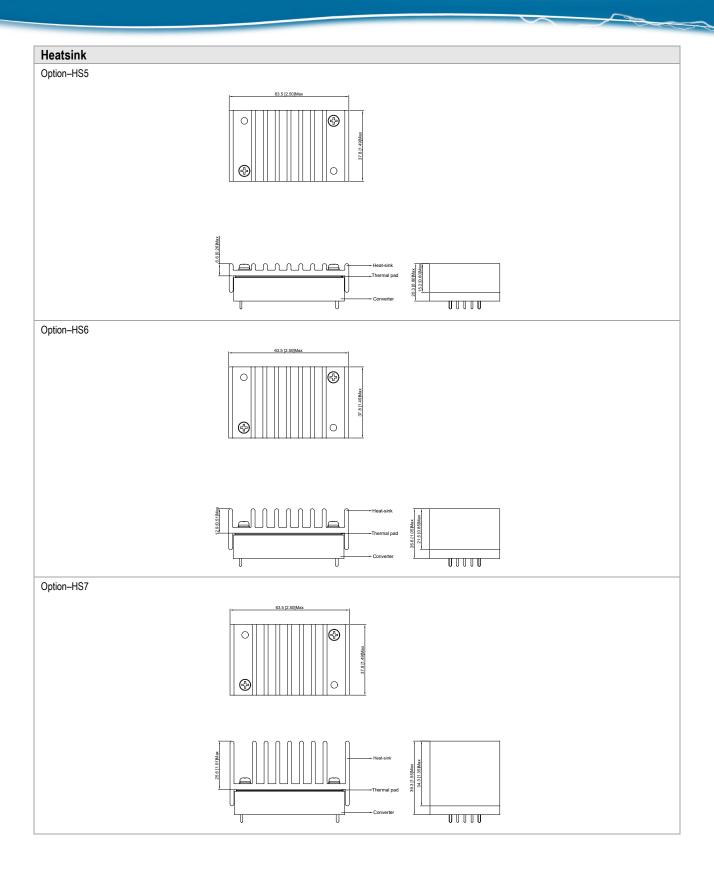
Derating Output Power Versus Ambient Temperature (with HS6 heatsink)

Derating Output Power Versus Ambient Temperature (with 2U iron back-plate (Dimension 241X89X1.6mm))

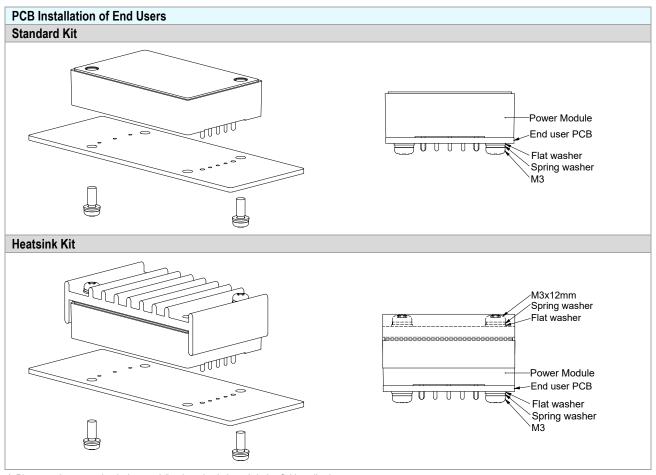
Pin Con	Pin Connections									
Pin	Function	Diameter mm (inches)								
1	+Vin	Ø 1.0 [0.04]								
2	Remote On/Off	Ø 1.0 [0.04]								
3	-Vin	Ø 1.0 [0.04]								
4	-Vout	Ø 1.5 [0.06]								
5	* -Sense	Ø 1.0 [0.04]								
6	Trim	Ø 1.0 [0.04]								
7	* +Sense	Ø 1.0 [0.04]								
8	+Vout	Ø 1.5 [0.06]								

* If remote sense not used the +sense should be connected to +output and -sense should be connected to -output Maximum output deviation is 10% inclusive of trim

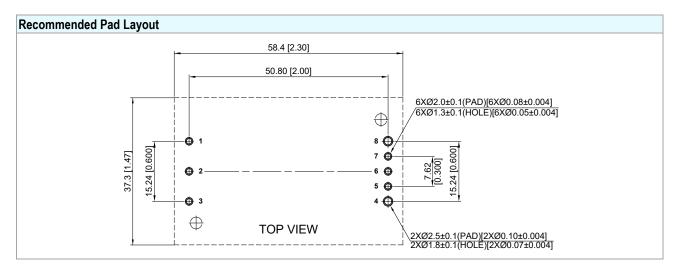
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

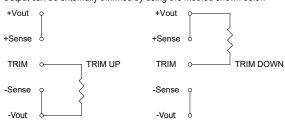

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)


Physical	Characterist	ics
----------	--------------	-----

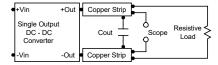
,		
Case Size	:	58.4x37.3x12.7 mm (2.30x1.47x0.50 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Top Side Base Material	:	Aluminum Plate
Pin Material	:	Copper
Potting Material	:	Silicone (UL94-V0)
Weight	:	70g




- 1. Please evaluates mechanical stress (vibration, shock, bump) during field applications.
- 2. It has to equip with installation kit if escess the guaranteed specifications, please contacts MINMAX for detail information.
- 3. Applied torque per screw 5 kgf.cm min.

External Output Trimming

Output can be externally trimmed by using the method shown below


MRZI75-110S05		-110S05	MRZI75	-110S12	MRZI75-	·110S15	MRZI75-	-110S24	MRZI75-	110S54
Trim Range	Trim down	Trim up	Trim down	Trim up						
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	$(k\Omega)$	(kΩ)	(kΩ)
1	138.88	106.87	413.55	351.00	530.73	422.77	599.27	486.53	1,882.57	560.73
2	62.41	47.76	184.55	157.50	238.61	189.89	268.09	217.71	877.94	230.36
3	36.92	28.06	108.22	93.00	141.24	112.26	157.69	218.11	543.06	120.24
4	24.18	18.21	70.05	60.75	92.56	73.44	102.49	83.31	375.62	65.18
5	16.53	12.30	47.15	41.40	63.35	50.15	69.37	56.43	275.15	32.15
6	11.44	8.36	31.88	28.50	43.87	34.63	47.3	38.5	208.18	
7	7.79	5.55	20.98	19.29	29.96	23.54	31.52	25.7	160.34	
8	5.06	3.44	12.80	12.37	19.53	15.22	19.7	16.1	124.46	
9	2.94	1.79	6.44	7.00	11.41	8.75	10.5	8.64	96.55	
10	1.24	0.48	1.35	2.70	4.92	3.58	3.14	2.66	74.23	
11									55.96	
12									40.74	
13									27.86	
14									16.82	
15									7.25	

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a $22\mu\text{F}$ polymer capacitor for 5V, 12V, 15V output models and a $33\mu\text{F}$ polymer capacitor for 24V output model and a $1\mu\text{F}$ ceramic capacitor for 54V output model. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

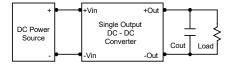
Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Negative logic remote on/off turns the module on during a logic low voltage on the remote on/off pin, and off during a logic high. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum source current at the on/off terminal (Pin 2) during a logic high is 500µA.

Overload Protection

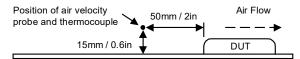

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.

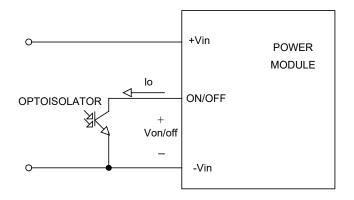


Maximum Capacitive Load

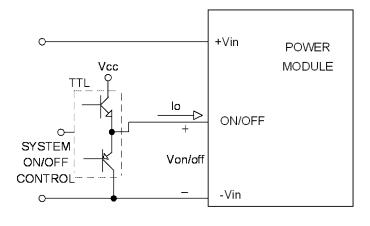
The MRZI75 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the baseplate temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Model	D1	C1	C2
MRZI75 Series	IN5408	470μF/200V	150µF/200V
		CHEMI-CON KXJ Series	CHEMI-CON KXJ Series

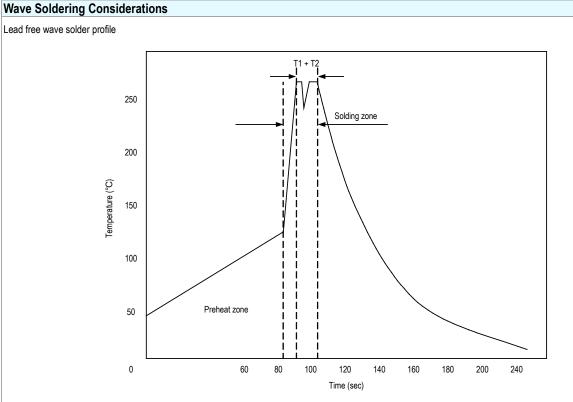

Remote On/Off Implementation

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

The negative logic remote ON/OFF control circuit is included. Turns the module ON during logic Low on the ON/Off pin and turns OFF during logic High. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please short circuit between on/off pin and -Vin pin to turn the module on.



Isolated-Closure Remote ON/OFF



Level Control Using TTL Output

Zone	Reference Parameter	
Preheat	Rise temp. speed: 3°C/sec max.	
zone	Preheat temp. : 100~130°C	
Actual	Peak temp. : 250~260°C	
heating	Peak time(T1+T2): 4~6 sec	

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure M R ΖI 75 110 S 05 Ultra-wide 4:1 Output Power **Output Quantity** Output Voltage Application Input Voltage Range 75 Watt 36 ~ 160 VDC VDC Railway Input Voltage Range S: Single 5 05: VDC 12: 12 VDC 15: 15 VDC 24: 24 VDC 54: 54

MTBF and Reliability

The MTBF of MRZI75 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit	
MRZI75-110S05	642,314		
MRZI75-110S12	751,523		
MRZI75-110S15	742,085	Hours	
MRZI75-110S24	960,981		
MRZI75-110S54	921,863		