

MOA20C Series

DC-DC Power Module 20W

Features

- Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- ▶ 80-160VDC Wide Input Voltage Range
- Fully Regulated Output Voltage
- High Efficiency up to 88%
- I/O Isolation 3000VAC with Reinforced Insulation, rated for 1000Vrms Working Voltage
- Operating Ambient Temp. Range -40°C to +94.5°C
- No Min. Load Requirement
- ► Very Low No Load Power Consumption
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off Control
- ► EMI Emission EN 55032 Class A Approved
- EMC Immunity EN 61000-4-2,3,4,5,6,8 Approved
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MOA20C series is the latest 20Watt isolated DC-DC power module generation with 9 fixed output voltage models: $5 / 5.1 / 12 / 15 / 24 / 48 / \pm 12 / \pm 15 / \pm 24$ VDC. The wide input range from 80VDC to 160VDC is specifically for electricity and renewable energy field applications within the usage of terminal strip connectors in chassis and DIN-Rail package.

The key performances are : 3000VAC I/O Isolation, reinforced insulation, high efficiency, wide operating ambient temp. range -40°C to +94.5°C, no min. load, low no-load power consumption, remote on/off, built-in EMI emission EN 55032 Class A, UVLO, OVP, and SCP. The MOA20C series certificates in safety UL/cUL/IEC/EN 62368-1 with CB report and CE marking and offers a solution for eliminating components of a power board.

Table of contents

Model Selection Guide	P2
Input Specifications	P2
Remote On/Off Control	P2
Output Specifications	P2
General Specifications	P3
EMC Specifications	P3
Environmental Specifications	P3

Characteristic Curves	P4
Package Specifications	P13
Test Setup	P14
Technical Notes	P14
Part Number Structure	P15
MTBF and Reliability	P15

www.minmax.com.tw

Electric Characteristic Note

Rev:3 2022/04/07 Page 1 of 15

MOA20C SERIES

Model Selection Guid	le							
Model	Input	Output	Output	Ing	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)			@ Max. Load	@ No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MOA20-110S05C		5	4000	209		6.2	6800	87
MOA20-110S051C		5.1	4000	213		6.2	6800	87
MOA20-110S12C		12	1670	207		15	1200	88
MOA20-110S15C	440	15	1340	208		18	750	88
MOA20-110S24C	110 (80 ~ 160)	24	830	206	10	30	300	88
MOA20-110S48C	(80 ~ 100)	48	420	208		60	75	86
MOA20-110D12C		±12	±830	208		±15	380#	87
MOA20-110D15C		±15	±670	210		±18	380#	87
MOA20-110D24C		±24	±420	211		±30	150#	87

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (100 ms max.)		-0.7		170	
Start-Up Threshold Voltage				80	VDC
Under Voltage Shutdown		65	70		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30	60	ms
Input Filter	All Models		Interna	I Pi Type	

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12	V or Open Circuit			
Converter Off	0V ~ 1.2	/ or Short Circuit			
Control Input Current (On)	Vctrl = 5.0V			0.5	mA
Control Input Current (Off)	Vctrl = 0V			-0.5	mA
Control Common	Reference	d to Negative Input			
Standby Input Current	Nominal Vin		3		mA

Output Specifications						
Parameter	Con	ditions / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±1.0	±2.0	%Vnom.
Output Voltage Balance	Dual Out	out, Balanced Loads			±2.0	%
Line Regulation	Vin=Min.	to Max. @Full Load		±0.5	±1.0	%
Load Regulation	lo:	=0% to 100%		±0.5	±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical	Load 25/100% Full Load			±5.0	%
Minimum Load		No minimum Loa	id Requiremen	t		
		5V & 5.1V Output Models			100	mV _{P-P}
Ripple & Noise	0-20MHz Bandwith	±24V & 48V Output Models			200	mV _{P-P}
		Other Output Models			150	mV _{P-P}
Transient Recovery Time	250/ 1 -	ad Stan Change		250		µsec
Transient Response Deviation	25% L0	ad Step Change(2)		±3	±5	%
Temperature Coefficient					±0.02	%/°C
Over Load Protection		Hiccup		150	180	%
Short Circuit Protection		Continuous, Automatic Recove	ery (Hiccup Mo	de 0.5Hz typ.)		

General Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds Reinforced insulation, rated for 1000Vrms working voltage	3000			VAC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			2200	pF
Switching Fragmanay	5V & 5.1V Output Models	187	220	253	kHz
Switching Frequency	Other Output Models	238	280	322	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	696,909			Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate)), IEC/EN 6236	8-1 & 60950- ⁻	1(CB report)	

EMC Specifications

Parameter		Standards & Leve	9	Performance
EMI	Conduction		Without outomal components	Class A
	Radiation	EN 55032 Without external components		Class A
	EN 55035			
	ESD	Direct discharge	Indirect discharge HCP &VCP	
	ESD	EN 61000-4-2 Air ± 8kV	Contact ±6kV	— A
EMS	Radiated immunity	EN 610	000-4-3 10V/m	A
EMS	Fast transient	EN 61	000-4-4 ±2kV	A
	Surge	EN 61	000-4-5 ±2kV	A
	Conducted immunity	EN 610	000-4-6 10Vrms	A
	PFMF	EN 610	00-4-8 100A/m	A

Environmental Specifications

Min. -40	Max.	Unit
_10		
-+0	+94.5	°C
	+105	°C
-50	+125	°C
	95	% rel. H
-	-	60 +125

Notes

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.

MOA20C SERIES

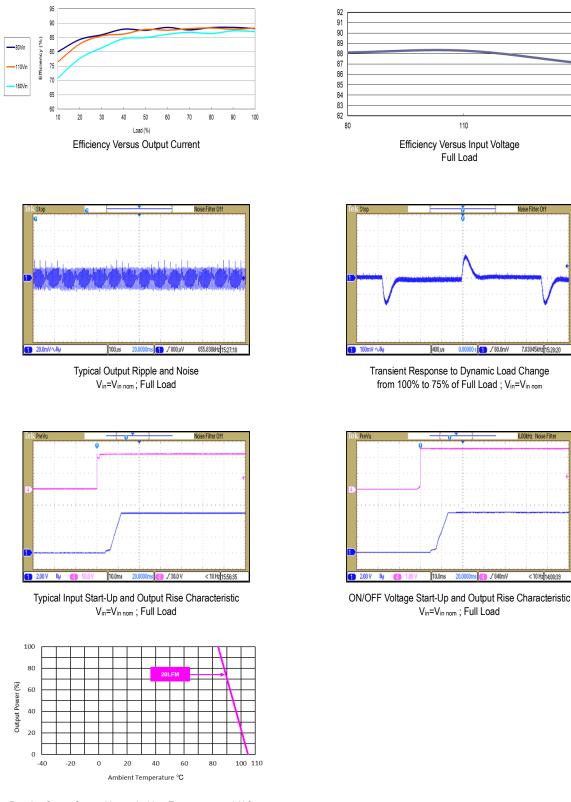
160

110

Full Load

1) / 80.0mV

7.84


10.0m

7.03045

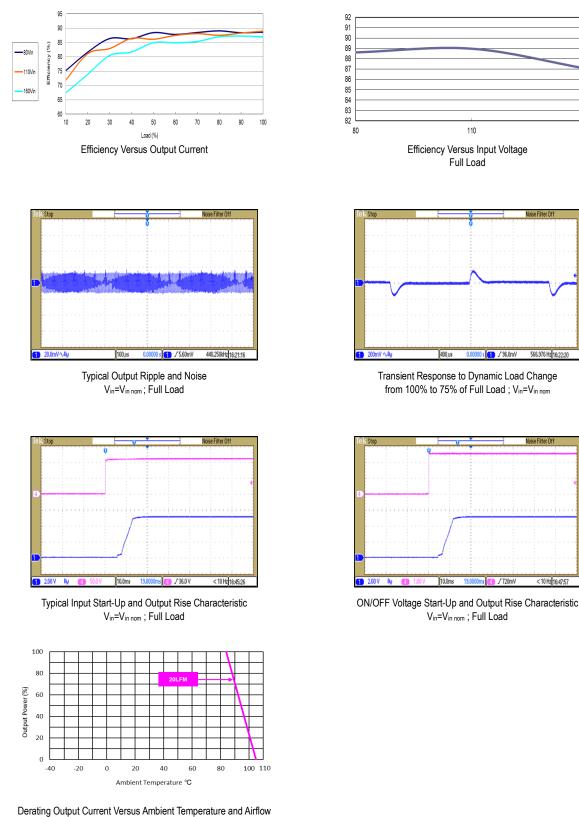
6.00kHz Noise

Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110S05C

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom

MOA20C SERIES


160

566.976 Hz 16

Noise Filter Of

Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110S051C

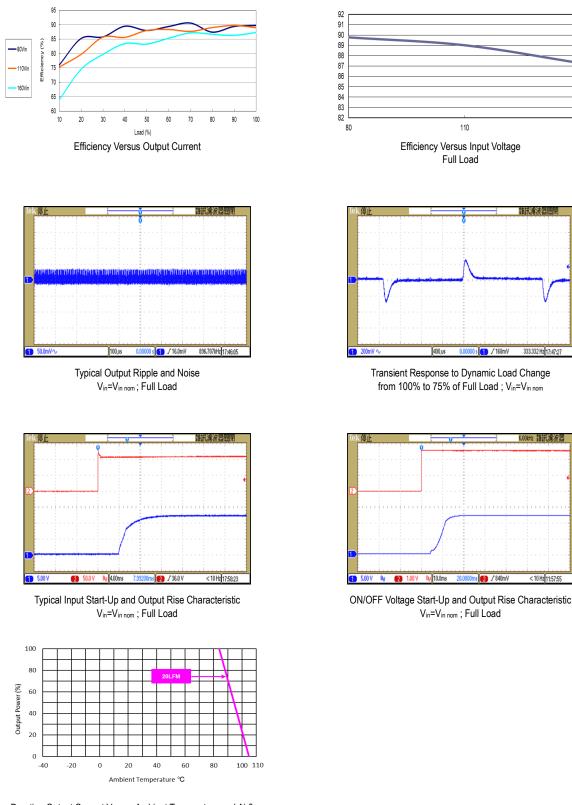
Vin=Vin nom

MOA20C SERIES

160

雜訊濾波器

6.00kHz 雜訊濾波器

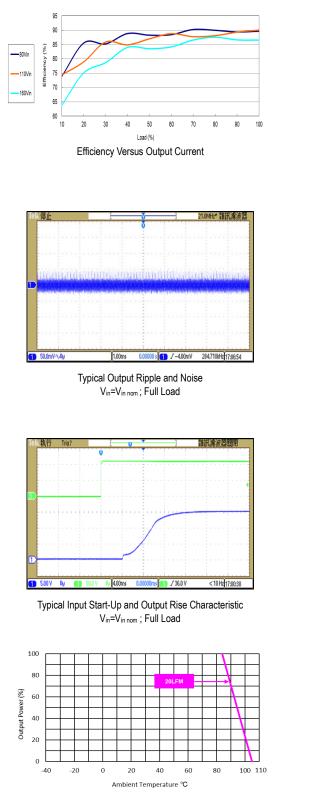

78

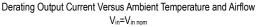
110

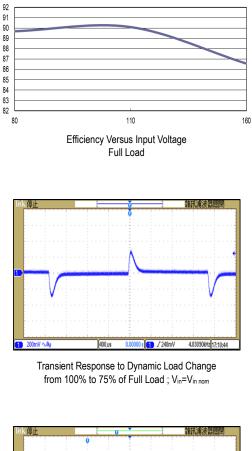
Full Load

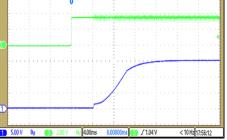
Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110S12C




Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom


MOA20C SERIES


Characteristic Curves

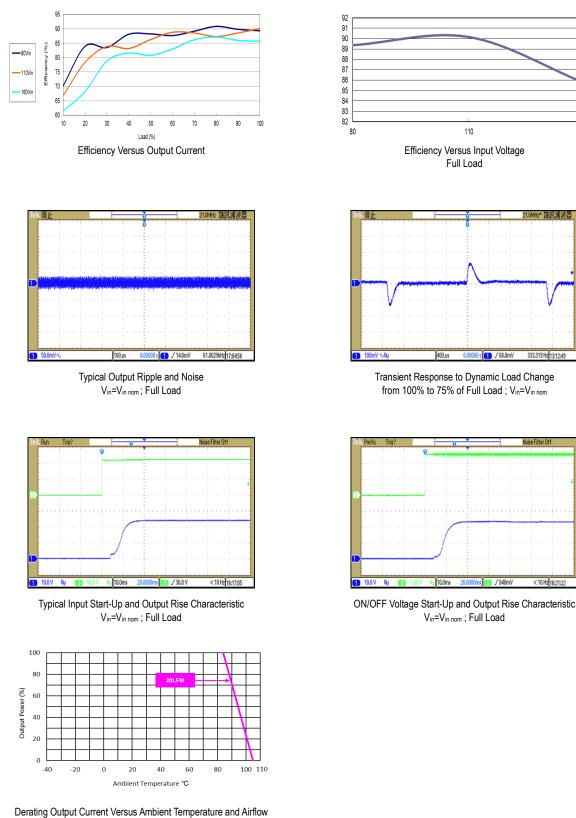
All test conditions are at 25°C The figures are identical for MOA20-110S15C

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

MOA20C SERIES

160

21.0MHz* 雜訊濾波器


1 / 68.0rr

/ 840

Noise Filter Off

Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110S24C

Vin=Vin nom

MOA20C SERIES

160

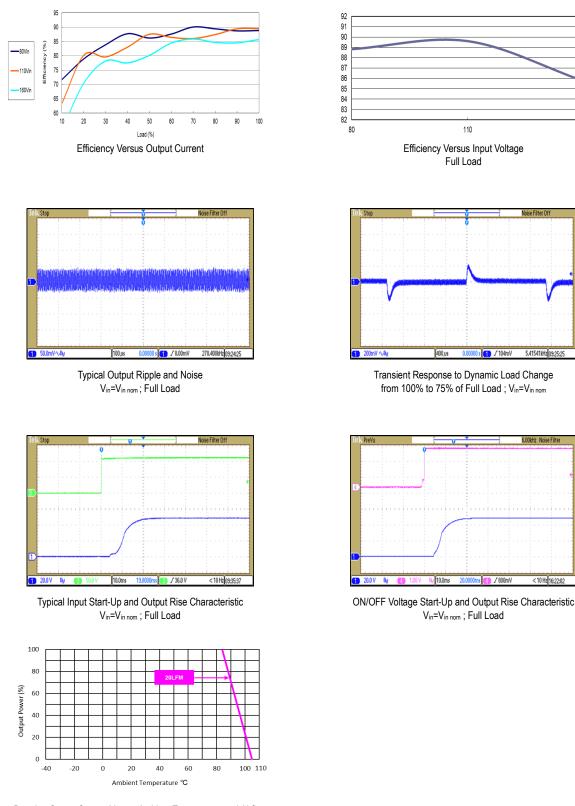
5.41541kHz

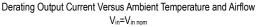
6.00kHz Noise Filt

🚺 / 104r

from 100% to 75% of Full Load ; Vin=Vin nom

10.0m

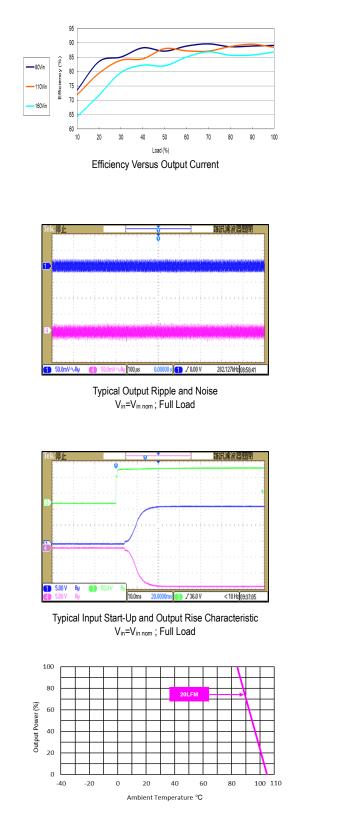

Vin=Vin nom ; Full Load


110

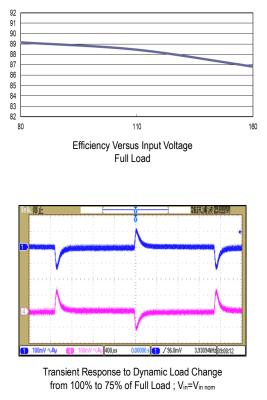
Efficiency Versus Input Voltage Full Load

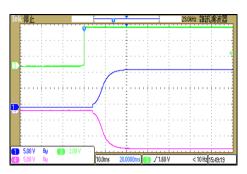
Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110S48C

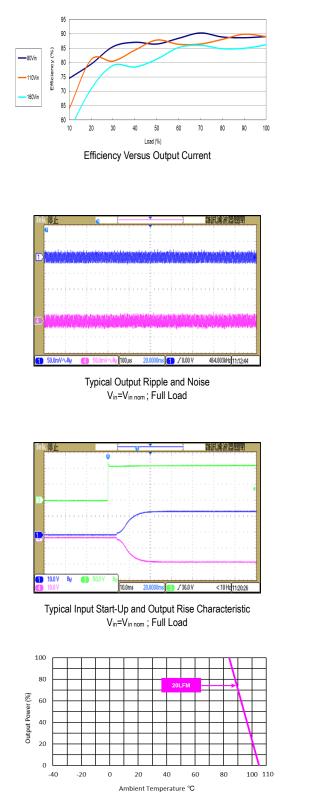




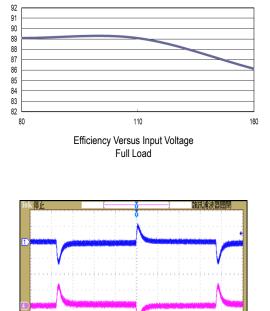

MOA20C SERIES

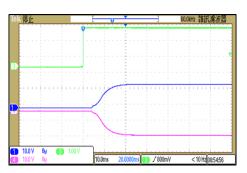

Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110D12C



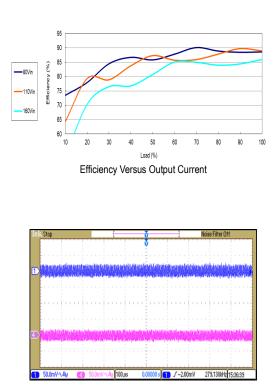
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


MOA20C SERIES

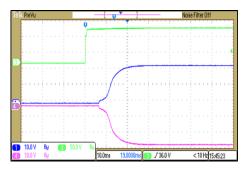

Characteristic Curves

All test conditions are at 25°C The figures are identical for MOA20-110D15C

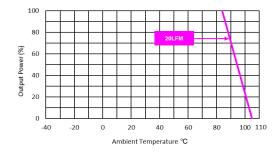
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

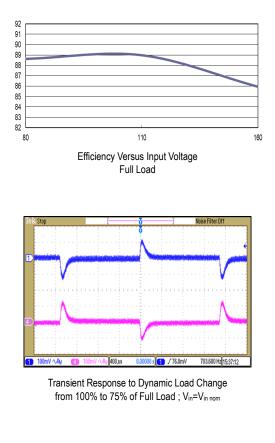


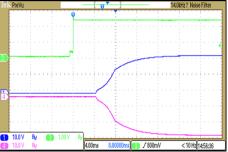
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load


MOA20C SERIES

Characteristic Curves

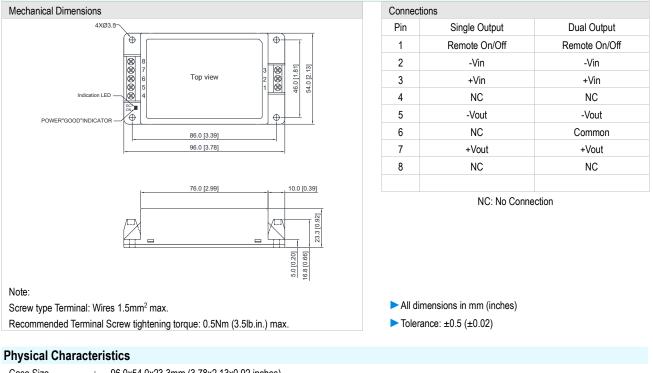

All test conditions are at 25°C The figures are identical for MOA20-110D24C


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

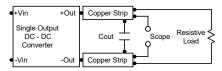
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$



ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load

MOA20C SERIES

Package Specifications Chassis Mounting


Case Size	:	96.0x54.0x23.3mm (3.78x2.13x0.92 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Weight	:	107g

MOA20C SERIES

Test Setup

Peak-to-Peak Output Noise Measurement Test

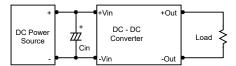
Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

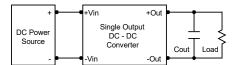
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -100µA.

Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

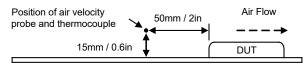
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

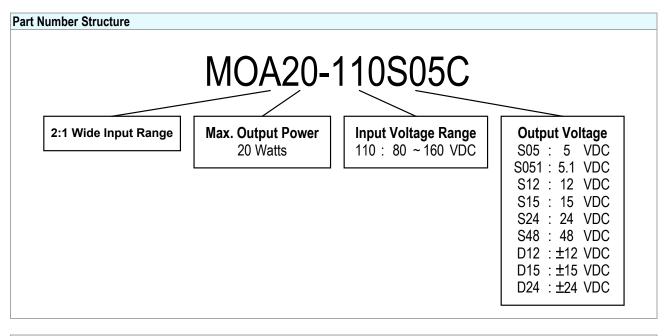

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.




Maximum Capacitive Load

The MOA20C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

MTBF and Reliability

The MTBF of MOA20C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MOA20-110S05C	698,925	
MOA20-110S051C	696,909	
MOA20-110S12C	953,257	
MOA20-110S15C	924,573	
MOA20-110S24C	909,086	Hours
MOA20-110S48C	749,668	
MOA20-110D12C	845,763	-
MOA20-110D15C	813,903	
MOA20-110D24C	769,829	