

FEATURES

- ► Industrial Standard 2"×1" Package
- ► Ultra-wide Input Range 9-36VDC, 18-75VDC, 40-160VDC
- ► I/O Isolation 3000VAC with Reinforced Insulation
- ▶ Operating Ambient Temp. Range -40°C to +95°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off. Output Voltage Trim
- ► Conducted EMI EN 55032/11 Class A Approved
- ► Passed Temperature Cycling Test (TCT) 500 cycles (Only for the P/N with suffix P)
- ► Passed Temperature and Humidity Bias Test (THB) for 1,000 hours
- ▶ Vibration and Shock/Bump Test EN 61373 Approved
- ➤ Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- ► Railway EMC Standard EN 50121-3-2 Approved
- ► Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

MINMAX's MKZI10 series is a high-performance 10W isolated DC-DC converter designed specifically for railway applications. The MKZI10 series adopts the international standard 2"x1" package, offering a choice of 18 models suitable for various input voltage ranges such as 24(9-36)VDC, 48(18-75)VDC, 72/110(40-160)VDC, and achieves highly accurate output voltage. With an excellent circuit topology design, the MKZI10 series achieves an impressive conversion efficiency of up to 89%. The outstanding overall thermal design allows the MKZI10 series to operate in a working environment temperature range from -40°C to +90°C, spanning a temperature difference of 130°C, making it highly suitable for extremely cold and hot harsh environments. The MKZI10 series features multiple functions, including undervoltage, overcurrent, overvoltage, short circuit protection, remote on/off, output voltage trim, 3000VAC I/O isolation voltage, reinforced insulation system, and complies with conducted EMI EN 55032/11 Class A certification. In addition, the MKZI10 series has passed vibration and shock/bump tests EN 61373, cooling, dry, and damp heat tests IEC/EN 60068-2-1,2,30, and complies with railway EMC

standard EN 50121-3-2, also obtaining railway certification EN 50155(IEC 60571). Through rigorous certification and testing processes, we are confident

that the MKZI10 series can meet the stringent requirements of railway equipment to withstand harsh environmental conditions.

In addition, if customers prioritize the durability of materials and the severe temperature variations that devices may encounter, MINMAX also offers the MKZI10 series to meet these requirements. All models in this series have undergone Temperature Cycling Testing (TCT), demonstrating their ability to withstand 500 cycles(Option) of high and low-temperature variations (-40°C to +125°C) at a rate of 20°C/min. Furthermore, they have successfully passed the Temperature Humidity Bias Test (THB), enduring conditions of high temperature and humidity (85°C temperature & 85% humidity) for up to 1,000 hours. With long-term reliability assurance, excellent electrical performance, and good thermal performance, the MKZI10 series has been widely applied by customers in various railway equipment, such as traction inverters, passenger information systems, safety monitoring systems, turnout monitoring systems, and more, providing the best solution for railway applications facing harsh conditions.

Model Selection	Guide							
Model	Input	Output	Output	Input		Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MKZI10-24S05		5	2000	496		6.2	2200	84
MKZI10-24S12		12	835	485		15	330	86
MKZI10-24S15	24	15	670	481	0.5	18	220	87
MKZI10-24S24	(9 ~ 36)	24	417	474	25	30	100	88
MKZI10-24D12		±12	±417	485		±15	150#	86
MKZI10-24D15		±15	±335	481		±18	100#	87
MKZI10-48S05		5	2000	245		6.2	2200	85
MKZI10-48S12		12	835	240		15	330	87
MKZI10-48S15	48	15	670	241	45	18	220	87
MKZI10-48S24	(18 ~ 75)	24	417	242	15	30	100	86
MKZI10-48D12		±12	±417	234		±15	150#	89
MKZI10-48D15		±15	±335	238		±18	100#	88
MKZI10-110S05		5	2000	111		6.2	2200	82
MKZI10-110S12		12	835	107		15	330	85
MKZI10-110S15	110	15	670	107	40	18	220	85
MKZI10-110S24	(40 ~ 160)	24	417	107	10	30	100	85
MKZI10-110D12		±12	±417	106		±15	150#	86
MKZI10-110D15		±15	±335	106		±18	100#	86

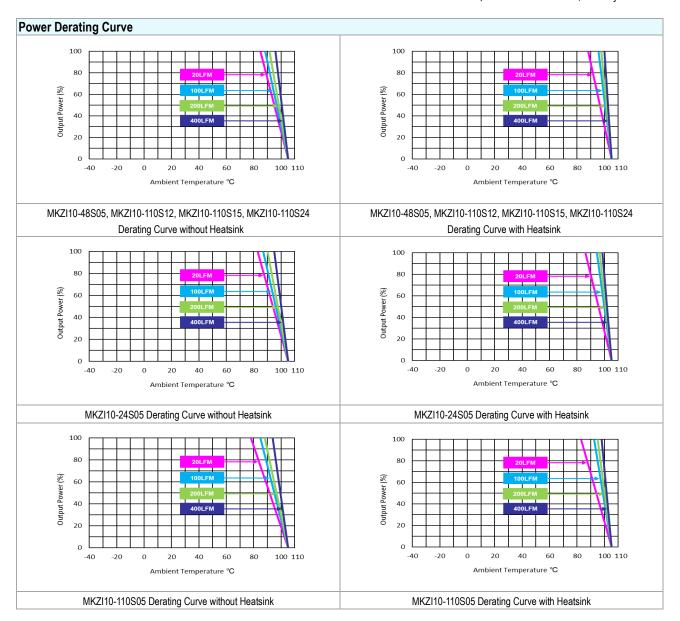
For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	24V Input Models	-0.7		50	
Input Surge Voltage (100ms. max)	48V Input Models	-0.7		100	
	110V Input Models	-0.7		170	
	24V Input Models 48V Input Models 110V Input Models			9	
Start-Up Threshold Voltage				18	VDC
				40	
	24V Input Models		7.5		
Under Voltage Shutdown	48V Input Models		16		
	110V Input Models		37		
Start Up Time (Power On)	All Models		30	50	mS
Input Filter			Internal Pi Type		

Remote On/Off Control									
Parameter	Conditions	Min.	Тур.	Max.	Unit				
Converter On	3.5V ~ 12V or Open Circuit								
Converter Off	0V ~ 1.2V or Short Circuit								
Control Input Current (on)	Vctrl = 5.0V		0.5		mA				
Control Input Current (off)	Vctrl = 0V		-0.5		mA				
Control Common	Referenced to Negative Input								
Standby Input Current	Nominal Vin		2.5		mA				

Output Specifications							
Parameter		Conditions / Model			Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance		Dual Output, Balanced Lo	pads			±2.0	%
Line Regulation		Vin=Min. to Max. @ Full L	oad.			±0.2	%
Load Degulation		lo=0% to 100% Single Output Dual Output				±0.5	%
Load Regulation						±1.0	%
Minimum Load			No minimum Load Re	equirement			
	0-20 MHz Bandwidth	5Vo	Measured with a 10µF/25V MLCC		50		mV _{P-P}
Diagle 9 Maine		12Vo, 15Vo, ±12V, ±15Vo			100		mV _{P-P}
Ripple & Noise		24)/-	Measured with a		150		m\/
		24Vo	4.7µF/50V MLCC				mV _{P-P}
Transient Recovery Time		OFO/ Land Otan Ohanna				300	μsec
Transient Response Deviation		25% Load Step Change	(2)		±3	±5	%
Temperature Coefficient						±0.02	%/°C
Trim Up / Down Range (See Page 9)		% of Nominal Output Voltage				±10	%
Over Load Protection		Hiccup			150		%
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)					

General Specifications						
Parameter	Conditions		Тур.	Max.	Unit	
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	3000			VAC	
Isolation Voltage Input/Output to case	Rated For 60 Seconds	1500			VAC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		1500		pF	
Switching Frequency			280		kHz	
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign	2,845,385			Hours	
Safety Approval	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report), EN 50155, IEC 60571					
	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					


EMC Specifications							
Parameter		Standards & Level Perform					
General		Compliance with EN 50121-3-2	2 Railway Applications				
ENAL.	Conduction	EN 55032/11	Without external components	Class A			
EMI ₍₅₎	Radiation	EIN 33032/11	With external components	Class A			
	EN 55035						
	ESD	EN 61000-4-2 A	A				
	Radiated immunity	EN 61000-4-3 10V/m					
EMS ₍₅₎	Fast transient	EN 61	A				
	Surge	EN 61	A				
	Conducted immunity	EN 610	Α				
	PFMF	EN 61000-4-8 100A/m, 1000A/m For 1 Second					

D	Conditions / Model		Ma	11.3	
Parameter	Conditions / Model	Min.	without Heatsink with Heatsink		Unit
	MKZI10-48D12		90 93		
	MKZI10-24S24, MKZI10-48D15		88	92	
	MKZI10-24S15, MKZI10-48S12, MKZI10-48S15 MKZI10-24D15		0.7	00	
On another Architect Terror and the Bound			87	90	
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom.	MKZI10-24S12, MKZI10-48S24, MKZI10-24D12	-40	85	89	°C
(for Power Derating see relative Derating Curves)	MKZI10-110D12, MKZI10-110D15	-40	00	09	
ion i ower beraung see relative beraung Curves)	MKZI10-48S05, MKZI10-110S12, MKZI10-110S15		84	88	
	MKZI10-110S24		04		
	MKZI10-24S05		82	86	
	MKZI10-110S05		78	83	
Thermal Impedance	20LFM Convection without Heatsink				°C/W
	20LFM Convection with Heatsink	9.8			°C/W
	100LFM Convection without Heatsink	_FM Convection without Heatsink 9.2		-	°C/W
	100LFM Convection with Heatsink 5.4		-	°C/W	
	200LFM Convection without Heatsink 7.8		-	°C/W	
	200LFM Convection with Heatsink				°C/W
	400LFM Convection without Heatsink	5.2			°C/W
	400LFM Convection with Heatsink	3.0		-	°C/W
Case Temperature			+10	05	°C
Storage Temperature Range		-50	+12	25	°C
Cooling Test	Compliance to	IEC/EN6	0068-2-1		
Dry Heat	Compliance to	IEC/EN60	0068-2-2		
Damp Heat	Compliance to	IEC/EN60	068-2-30		
Shock & Vibration Test	Compliance	to IEC/EN	61373		
Humidity (non condensing)			9:	5	% rel. H
RFI	Six-Sided Shio	elded, Me	tal Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C
Temperature cycling(7)	Temperature: -40°C ~125°C, u	nti temp. r	amp 20°C/min., 500	cycles	
Temperature Humidity Bias(7)	Temperature: 85°C, H	umidity: 8	5%RH, 1,000hrs		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- 7 The condition is only for the P/N with suffix P.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Con	Pin Connections								
Pin	Single Output	Dual Output	Diameter mm (inches)						
1	+Vin	+Vin	Ø 1.0 [0.04]						
2	-Vin	-Vin	Ø 1.0 [0.04]						
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]						
4	+Vout	+Vout	Ø 1.0 [0.04]						
5	Trim	Common	Ø 1.0 [0.04]						
6	-Vout	-Vout	Ø 1.0 [0.04]						

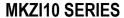
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.75 (X.XX±0.03)

X.XX±0.25 (X.XXX±0.01)

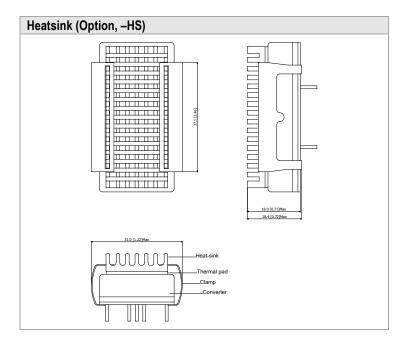
➤ Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Pin Con	Pin Connections								
Pin	Single Output	Dual Output	Diameter mm (inches)						
1	+Vin	+Vin	Ø 1.0 [0.04]						
2	-Vin	-Vin	Ø 1.0 [0.04]						
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]						
4	+Vout	+Vout	Ø 1.0 [0.04]						
5	-Vout	Common	Ø 1.0 [0.04]						
6	Trim	-Vout	Ø 1.0 [0.04]						

- ➤ All dimensions in mm (inches)
- ► Tolerance: X.X±0.75 (X.XX±0.03)


X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)


Physical	Charact	teristics
----------	---------	-----------

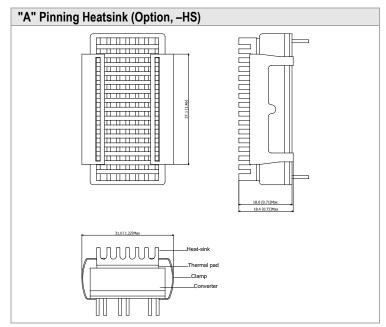
:	50.8x25.4x11.0 mm (2.0x1.0x0.43 inches)
:	Metal With Non-Conductive Baseplate
:	FR4 PCB (flammability to UL 94V-0 rated)
:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
:	Copper Alloy
:	Silicone (UL94-V0)
:	40.5g
	: : : : : : : : : : : : : : : : : : : :

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Physical Characteristics

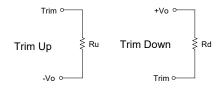
Heatsink Material : Aluminum

Finish : Black Anodized Coating


Weight : 9g

The advantages of adding a heatsink are:

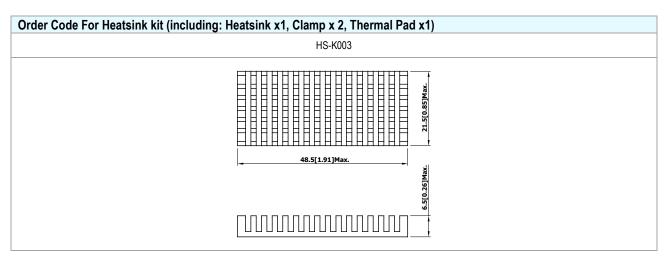
1. To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.


2. To increase operating temperature of the DC-DC converter,

please refer to Derating Curve.

External Output Trimming

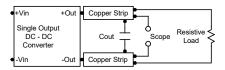
Output can be externally trimmed by using the method shown below

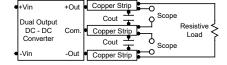


MKZI10-X		MKZI10-XXS05		MKZI10-XXS12		MKZI10-XXS15		MKZI10-XXS24	
Trim Range	Trim down	Trim up							
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	$(k\Omega)$	
1	137.88	108.09	419.81	344.74	602.92	482.88	598.97	486.83	
2	61.93	48.39	187.68	154.37	269.91	215.89	267.93	217.87	
3	36.61	28.49	110.30	90.92	158.91	126.89	157.59	128.21	
4	23.95	18.54	71.61	59.19	103.41	82.40	102.42	83.38	
5	16.35	12.56	48.40	40.15	70.10	55.70	69.31	56.49	
6	11.29	8.58	32.93	27.46	47.90	37.90	47.25	38.56	
7	7.67	5.74	21.87	18.39	32.05	25.18	31.48	25.75	
8	4.96	3.61	13.58	11.59	20.15	16.65	19.66	16.14	
9	2.85	1.95	7.13	6.31	10.90	8.23	10.46	8.67	
10	1.16	0.62	1.98	2.07	3.50	2.30	3.11	2.69	

rder Code Table (with TCT 150 cycles + THB 1,000 hours)					
Standard	With heatsink	With "A" Pinning	With "A" Pinning & heatsink		
MKZI10-24S05	MKZI10-24S05-HS	MKZI10-24S05A	MKZI10-24S05A-HS		
MKZI10-24S12	MKZI10-24S12-HS	MKZI10-24S12A	MKZI10-24S12A-HS		
MKZI10-24S15	MKZI10-24S15-HS	MKZI10-24S15A	MKZI10-24S15A-HS		
MKZI10-24S24	MKZI10-24S24-HS	MKZI10-24S24A	MKZI10-24S24A-HS		
MKZI10-24D12	MKZI10-24D12-HS	MKZI10-24D12A	MKZI10-24D12A-HS		
MKZI10-24D15	MKZI10-24D15-HS	MKZI10-24D15A	MKZI10-24D15A-HS		
MKZI10-48S05	MKZI10-48S05-HS	MKZI10-48S05A	MKZI10-48S05A-HS		
MKZI10-48S12	MKZI10-48S12-HS	MKZI10-48S12A	MKZI10-48S12A-HS		
MKZI10-48S15	MKZI10-48S15-HS	MKZI10-48S15A	MKZI10-48S15A-HS		
MKZI10-48S24	MKZI10-48S24-HS	MKZI10-48S24A	MKZI10-48S24A-HS		
MKZI10-48D12	MKZI10-48D12-HS	MKZI10-48D12A	MKZI10-48D12A-HS		
MKZI10-48D15	MKZI10-48D15-HS	MKZI10-48D15A	MKZI10-48D15A-HS		
MKZI10-110S05	MKZI10-110S05-HS	MKZI10-110S05A	MKZI10-110S05A-HS		
MKZI10-110S12	MKZI10-110S12-HS	MKZI10-110S12A	MKZI10-110S12A-HS		
MKZI10-110S15	MKZI10-110S15-HS	MKZI10-110S15A	MKZI10-110S15A-HS		
MKZI10-110S24	MKZI10-110S24-HS	MKZI10-110S24A	MKZI10-110S24A-HS		
MKZI10-110D12	MKZI10-110D12-HS	MKZI10-110D12A	MKZI10-110D12A-HS		
MKZI10-110D15	MKZI10-110D15-HS	MKZI10-110D15A	MKZI10-110D15A-HS		

Order Code Table (with TCT 500 cycles + THB 1,000 hours)					
Standard	With heatsink	With "A" Pinning	With "A" Pinning & heatsink		
MKZI10-24S05P	MKZI10-24S05P-HS	MKZI10-24S05AP	MKZI10-24S05AP-HS		
MKZI10-24S12P	MKZI10-24S12P-HS	MKZI10-24S12AP	MKZI10-24S12AP-HS		
MKZI10-24S15P	MKZI10-24S15P-HS	MKZI10-24S15AP	MKZI10-24S15AP-HS		
MKZI10-24S24P	MKZI10-24S24P-HS	MKZI10-24S24AP	MKZI10-24S24AP-HS		
MKZI10-24D12P	MKZI10-24D12P-HS	MKZI10-24D12AP	MKZI10-24D12AP-HS		
MKZI10-24D15P	MKZI10-24D15P-HS	MKZI10-24D15AP	MKZI10-24D15AP-HS		
MKZI10-48S05P	MKZI10-48S05P-HS	MKZI10-48S05AP	MKZI10-48S05AP-HS		
MKZI10-48S12P	MKZI10-48S12P-HS	MKZI10-48S12AP	MKZI10-48S12AP-HS		
MKZI10-48S15P	MKZI10-48S15P-HS	MKZI10-48S15AP	MKZI10-48S15AP-HS		
MKZI10-48S24P	MKZI10-48S24P-HS	MKZI10-48S24AP	MKZI10-48S24AP-HS		
MKZI10-48D12P	MKZI10-48D12P-HS	MKZI10-48D12AP	MKZI10-48D12AP-HS		
MKZI10-48D15P	MKZI10-48D15P-HS	MKZI10-48D15AP	MKZI10-48D15AP-HS		
MKZI10-110S05P	MKZI10-110S05P-HS	MKZI10-110S05AP	MKZI10-110S05AP-HS		
MKZI10-110S12P	MKZI10-110S12P-HS	MKZI10-110S12AP	MKZI10-110S12AP-HS		
MKZI10-110S15P	MKZI10-110S15P-HS	MKZI10-110S15AP	MKZI10-110S15AP-HS		
MKZI10-110S24P	MKZI10-110S24P-HS	MKZI10-110S24AP	MKZI10-110S24AP-HS		
MKZI10-110D12P	MKZI10-110D12P-HS	MKZI10-110D12AP	MKZI10-110D12AP-HS		
MKZI10-110D15P	MKZI10-110D15P-HS	MKZI10-110D15AP	MKZI10-110D15AP-HS		




E-mail:sales@minmax.com.tw Tel:886-6-2923150

Test Setup

Peak-to-Peak Output Noise Measurement Test

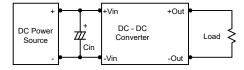
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

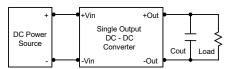
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

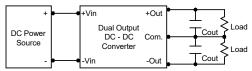
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

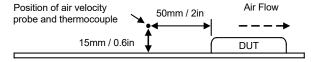
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of $4.7\mu\text{F}$ for the 24V input devices, a $2.2\mu\text{F}$ for the 48V devices and a $1\mu\text{F}$ for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load

The MKZI10 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan
Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw

Minmax Technology Co., Ltd.

2024/06/13 REV:13 Page 11 of 11