

MKWI40 Series EC Note

DC-DC CONVERTER 40W, Highest Power Density

Features

- ► Smallest Encapsulated 40W Converter
- ► Ultra-compact 2" X 1" Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 91%
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Overload/Voltage/Temp. and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- Workstations
- ► Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MKWI40 series is the latest generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 40W in an encapsulated, shielded metal package with dimensions of just 2.0"x1.0"x0.4". All models provide ultra-wide 4:1 input voltage range and precisely regulated output voltages.

Advanced circuit topology provides a very high efficiency up to 91% which allows an operating temperature range of -40°C to +80°C. Further features include remote On/Off, trimmable output voltage, under-voltage lockout as well as overload and over-temperature protection. Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and many other space critical applications.

Table of contents

Model Selection Guide	P2 External Output Trimming	P21
Input Specifications	P2 Test Setup	P22
Remote On/Off Control	P2 Technical Notes	P22
Output Specifications	Remote ON/OFF Implementation	P23
General Specifications	P3 Packaging Information for Tube	P23
EMC Specifications	Wave Soldering Considerations	P24
Environmental Specifications	P4 Hand Welding Parameter	P24
Characteristic Curves	P5 Part Number Structure	P25
Package SpecificationsF	19 MTBF and Reliability	P25
Recommended Pad Layout for Single & Dual Output ConverterF	19	

Date:2024-06-13 Rev:7

Model Selection	Guide													
Model Number	Input Voltage	Output Voltage		tput rent		out rent	Reflected Ripple	Over Voltage	Max. capacitive Load	Efficiency (typ.)				
	(Range)		Max.	Min.	@Max. Load	@No Load	Current	Protection		@Max. Load				
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA (typ.)	VDC	μF	%				
MKWI40-24S033		3.3	8000	0	1240	90		3.9	21000	89				
MKWI40-24S05		5	8000	0	1850	90		6.2	13600	90				
MKWI40-24S12	0.4	12	3330	0	1870	95						15	2400	89
MKWI40-24S15	24	15	2670	0	1870	105	30	18	1500	89				
MKWI40-24S24	(9 ~ 36)	24	1670	0	1835	115		30	600	91				
MKWI40-24D12		±12	±1670	±145	1890	65		±15	1200#	88				
MKWI40-24D15		±15	±1330	±110	1890	65		±18	750#	88				
MKWI40-48S033		3.3	8000	0	620	55		3.9	21000	89				
MKWI40-48S05		5	8000	0	930	55		6.2	13600	90				
MKWI40-48S12	4.0	12	3330	0	930	60		15	2400	90				
MKWI40-48S15	48	15	2670	0	930	65	20	18	1500	90				
MKWI40-48S24	(18 ~ 75)	24	1670	0	918	75		30	600	91				
MKWI40-48D12		±12	±1670	±145	950	45		±15	1200#	88				
MKWI40-48D15		±15	±1330	±110	950	45		±18	750#	88				

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Instit Compa Valtage (400 mg man)	24V Input Models	-0.7		50	
Input Surge Voltage (100ms. max.)	48V Input Models	-0.7		100	
0	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	VDC
Hadaa Vallaaa Laalaa t	24V Input Models		8.3		
Under Voltage Lockout	48V Input Models		16.5		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models Internal LC Type			LC Type	

Remote On/Off Control							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V ~ 1.2V or Short Circuit						
Control Input Current (on)	Vctrl = 5.0V		0.5		mA		
Control Input Current (off)	Vctrl = 0V		-0.5		mA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin 2.5			mA			

Date:2024-06-13 Rev:7 MKWI40 Series – EC Notes 2

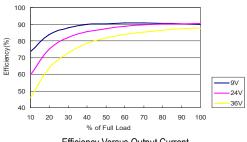
Parameter	Conditi	ons / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output,	Balanced Loads			±2.0	%
Line Regulation	Vin=Min. to I	Max. @Full Load			±0.5	%
Lead Develotion	Min. Load to Full	Single Output			±0.5	%
Load Regulation	Load	Dual Output			±1.0	%
Load Cross Regulation (Dual Output)	Asymmetrical Loa	d 25%/100% Full Load			±5.0	%
Minimum Load	No Minimu	No Minimum Load Requirement for S			utput Models see	Table
		3.3V & 5V Models			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	12V, 15V & 24V Models			150	mV _{P-P}
		Dual Output Models			150	mV _{P-P}
Transient Recovery Time	050/ 1	1.01 Ob		250		μsec
Transient Response Deviation	25% L0a0	I Step Change		±3	±5	%
Temperature Coefficient					±0.02	%/°C
Tire H. (Davis Barres (Octo Barre 04)	% of Nominal Output	24Vo Models			+20 / -10	0/
Trim Up / Down Range (See Page 21)	Voltage	Other Models			±10	%
Over Load Protection		Current Limitation			eup	
Chart Circuit Destration	24Va	o Models	Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ			
Short Circuit Protection	Othe	Other Models		Continuous, Automatic Recovery (Hiccup Mode 1.5Hz typ.)		

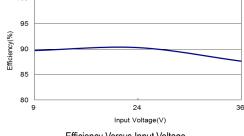
General Specifications							
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage	60 Seconds	1500			VDC		
	1 Seconds	1800			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V			1500	pF		
Cuitabina Francisco	24Vo Models		285		kHz		
Switching Frequency	Other Models		320		kHz		
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	MIL-HDBK-217F@25°C, Ground Benign 328,000 Hour					
Safety Approvals	UL/cUL 60950-1 recognition	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
	UL/cUL 62368-1 recognition	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

Parameter		Standards & Level					
ENT	Conduction	ENECO22	With automol common to	Class A			
EMI ₍₅₎	Radiation	EN55032	With external components	Class A			
	EN 55035	EN 55035					
	ESD	EN610	А				
	Radiated immunity		EN61000-4-3 10V/m	A			
EMS ₍₅₎	Fast transient		Α				
	Surge		EN61000-4-5 ±1kV	Α			
	Conducted immunity		EN61000-4-6 10Vrms	Α			
	PFMF		А				

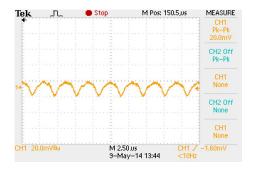
Date:2024-06-13 Rev:7 MKWI40 Series – EC Notes 3

Environmental Specifications					
Parameter	Conditions / Model	Min.	Ma	Unit	
Parameter	Conditions / Model		without Heatsink	with Heatsink	Unit
	MKWI40-XXS033		66	73	
	MKWI40-24S05, MKWI40-48S05		F4	61	
Operating Ambient Temperature Range	MKWI40-48S12, MKWI40-48S15		51	01	
Nominal Vin, Load 100% Inom.	MKWI40-24S12, MKWI40-24S15	-40	45	57	°C
(for Power Derating see relative Derating Curves)	MKWI40-24S24, MKWI40-48S24		57	66	
	MKWI40-24D12, MKWI40-24D15		40	52	
	MKWI40-48D12, MKWI40-48D15		40	52	
	20LFM Convection without Heatsink	12.0			°C/W
	20LFM Convection with Heatsink	10.0			°C/W
	100LFM Convection without Heatsink	100LFM Convection without Heatsink 9.0		-	°C/W
The arrest large adapted	100LFM Convection with Heatsink				°C/W
Thermal Impedance	200LFM Convection without Heatsink 8.0		-	°C/W	
	200LFM Convection with Heatsink	4.5			°C/W
	400LFM Convection without Heatsink	6.0	0		°C/W
	400LFM Convection with Heatsink	3.0			°C/W
Case Temperature			+1	05	°C
Thermal Protection	Shutdown Temperature		110°C	typ.	
Storage Temperature Range		-50	+1:	25	°C
Humidity (non condensing)			9:	5	% rel. H
RFI	Six-Sided Shi	elded, Metal	Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C


Notes

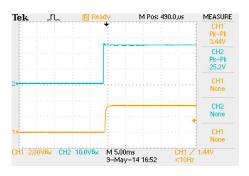

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a $1\mu F/50V$ M/C and a $10\mu F50V$ T/C.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-06-13 Rev:7 MKWI40 Series - EC Notes 4

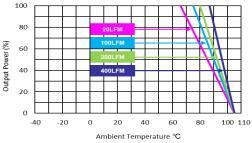

All test conditions are at 25°C The figures are identical for MKWI40-24S033



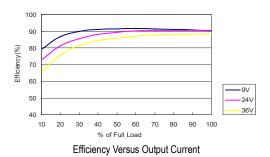
Efficiency Versus Output Current

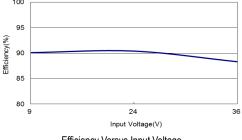

Efficiency Versus Input Voltage
Full Load

Typical Output Ripple and Noise $V_{in}=V_{in nom}$; Full Load

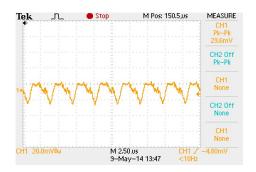

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

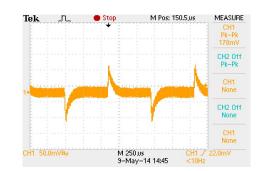

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

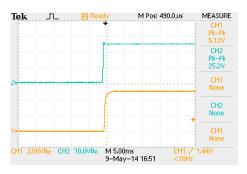


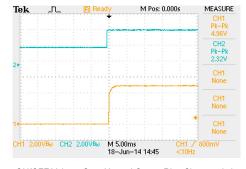
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in}} \text{ nom}$

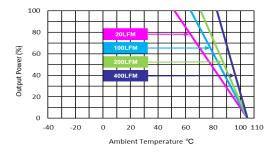


All test conditions are at 25°C The figures are identical for MKWI40-24S05



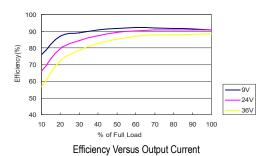

Efficiency Versus Input Voltage Full Load

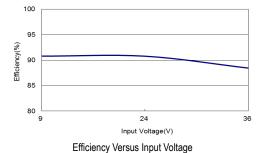

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load




Derating Output Current Versus Ambient Temperature $V_{in}=V_{in \ nom}$

CH1 20.0mVB⊌

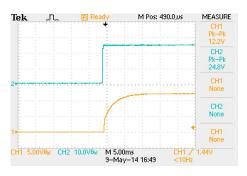
All test conditions are at 25°C The figures are identical for MKWI40-24S12

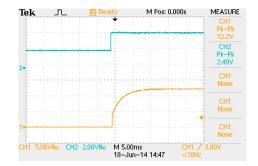
Full Load

● Stop M Pos: 150.5,us MEASURE Tek

CH1
Pk-Pk
33.6mV

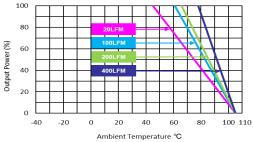
CH2 Off
Pk-Pk


CH1 None



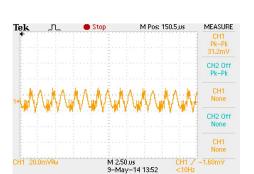
Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load

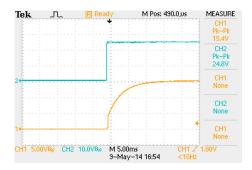
M 2.50 us 9-May-14 13:51

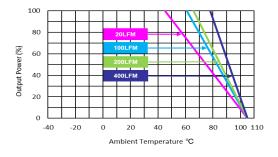

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

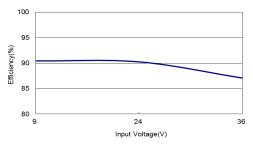
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

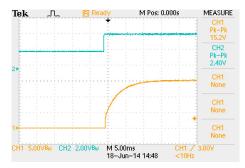

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in}} \text{ nom}$


All test conditions are at 25°C The figures are identical for MKWI40-24S15

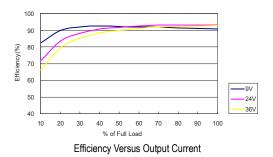


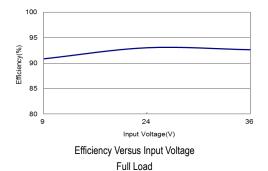

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

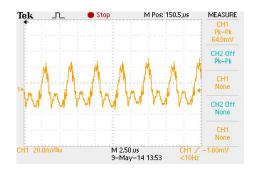
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

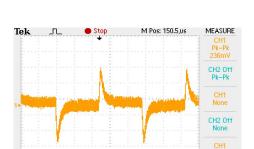

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Efficiency Versus Input Voltage Full Load

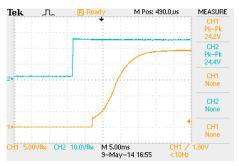

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

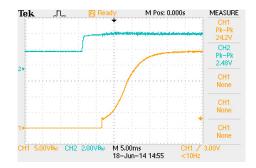



ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$



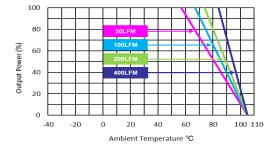
All test conditions are at 25°C The figures are identical for MKWI40-24S24



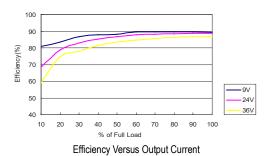

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

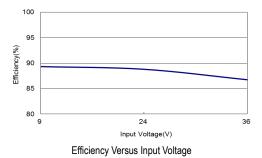
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

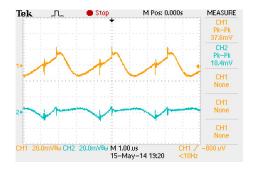
M 250 us 9-May-14 14:23


CH1 50.0mVB_w

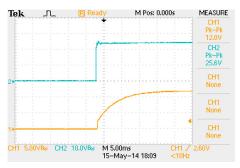
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

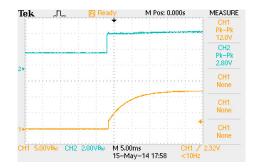

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load




Derating Output Current Versus Ambient Temperature

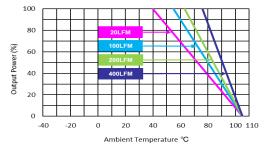
All test conditions are at 25°C The figures are identical for MKWI40-24D12



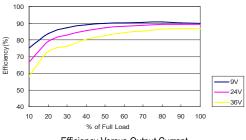


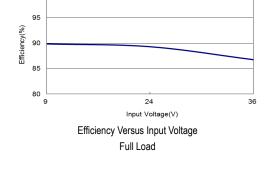
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

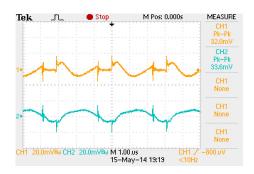
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


CH1 100mVB_W CH2 100mVB_W M 250.us 15-May-14 19:21

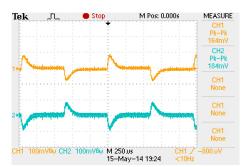
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

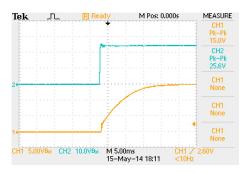

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

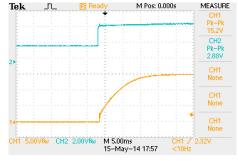

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in}} \, _{\text{nom}}$

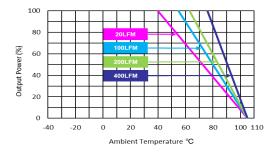


All test conditions are at 25°C The figures are identical for MKWI40-24D15

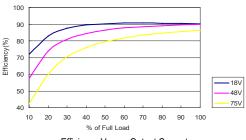


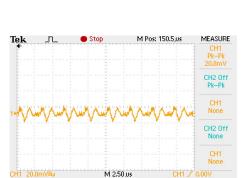


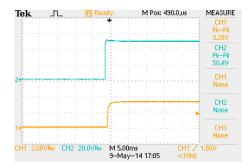

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

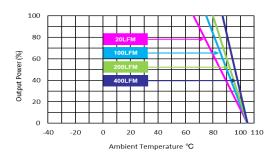

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

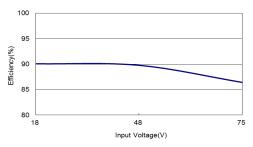
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \, ; \, \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

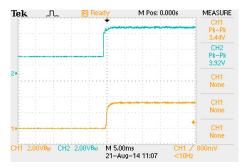

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25° C The figures are identical for MKWI40-48S033

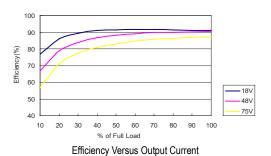

Efficiency Versus Output Current

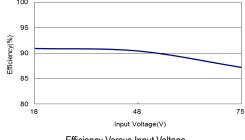

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

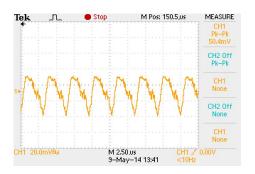

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Efficiency Versus Input Voltage Full Load

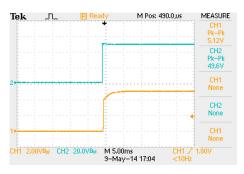

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

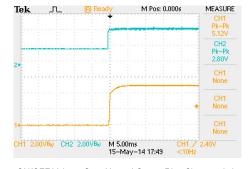


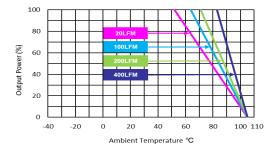
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$



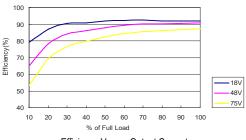
All test conditions are at 25°C The figures are identical for MKWI40-48S05


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

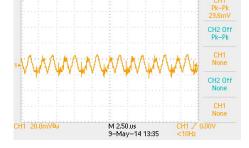
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \, ; \, \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

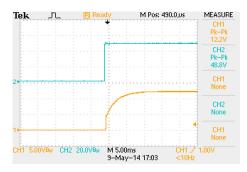
Derating Output Current Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$

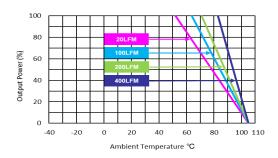


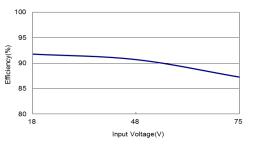
All test conditions are at 25°C The figures are identical for MKWI40-48S12

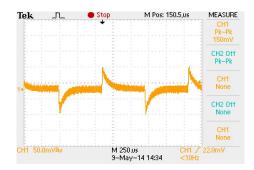


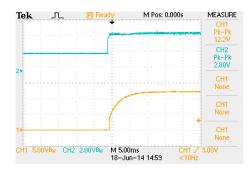
Efficiency Versus Output Current


M Pos: 150.5,us

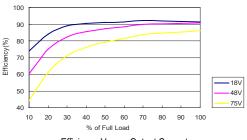

MEASURE

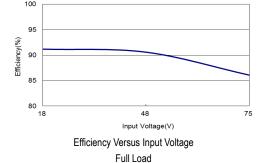

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

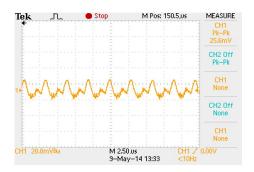

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \, ; \, \text{Full Load}$


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Efficiency Versus Input Voltage Full Load

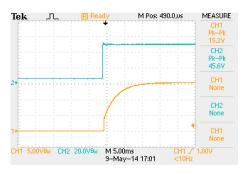

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

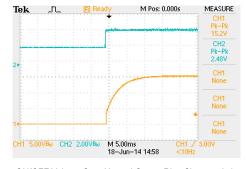

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

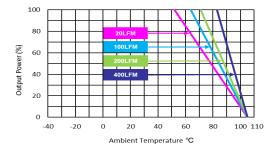


All test conditions are at 25°C The figures are identical for MKWI40-48S15

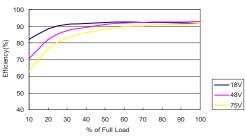
Efficiency Versus Output Current

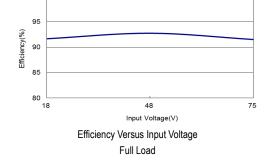


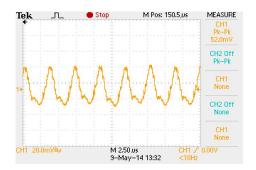

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \, ; \, \text{Full Load}$


ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

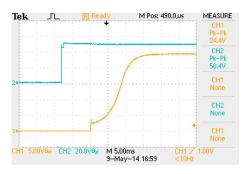

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

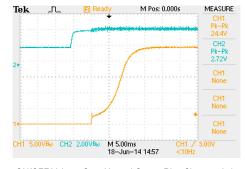


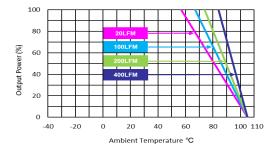
All test conditions are at 25°C The figures are identical for MKWI40-48S24



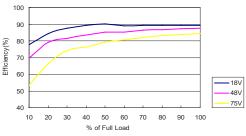
Efficiency Versus Output Current

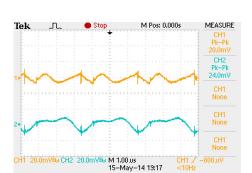


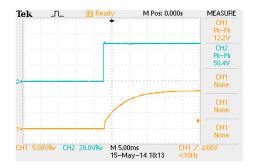

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

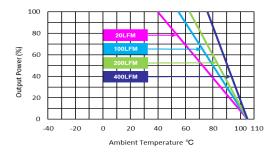

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

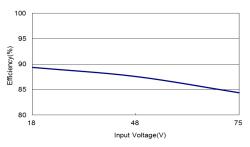
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

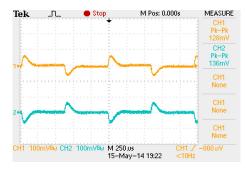

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

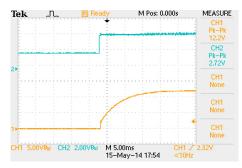

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MKWI40-48D12

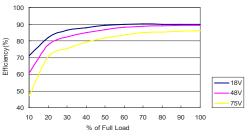

Efficiency Versus Output Current

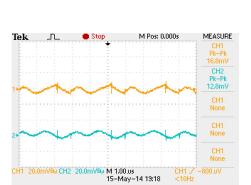

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

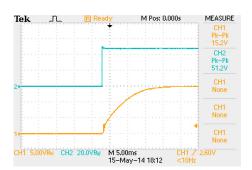

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$

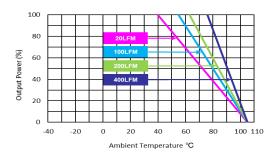

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

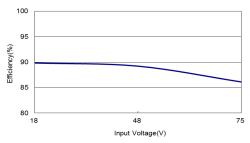
Efficiency Versus Input Voltage Full Load

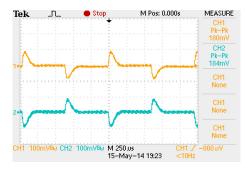

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

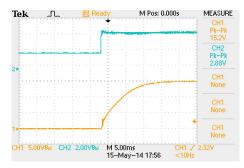

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$


All test conditions are at 25°C The figures are identical for MKWI40-48D15


Efficiency Versus Output Current


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in nom}} \; ; \text{Full Load}$

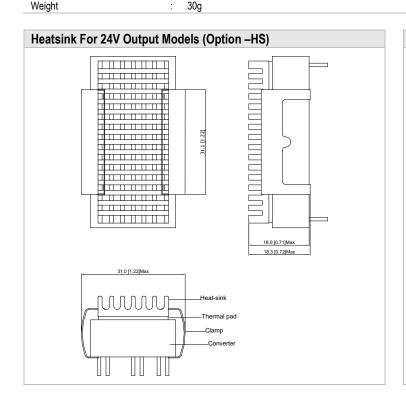
Pin Connections								
Pin	Single Output	Dual Output	Diameter mm (inches)					
1	+Vin	+Vin	Ø 1.0 [0.04]					
2	-Vin	-Vin	Ø 1.0 [0.04]					
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]					
4	+Vout	+Vout	Ø 1.0 [0.04]					
5	-Vout	Common	Ø 1.0 [0.04]					
6	Trim	-Vout	Ø 1.0 [0.04]					

- T: 11.0mm(0.43 inch) for 24V Output Models
- T: 10.2mm(0.40 inch) for Other Output Models
- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

▶ Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics


 Case Size (24V Output)
 : 50.8x25.4x11.0mm (2.0x1.0x0.43 inches)

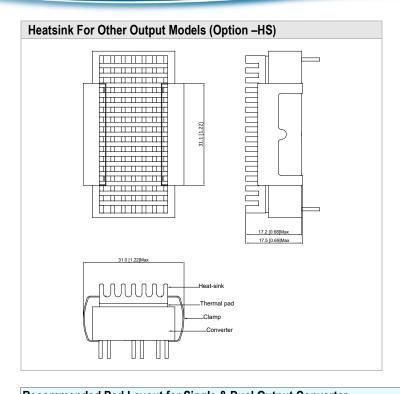
 Case Size (Other Output)
 : 50.8x25.4x10.2mm (2.0x1.0x0.40 inches)

 Case Material
 : Metal With Non-Conductive Baseplate

 Base Material
 : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Weight : 30g

Physical Characteristics


Heatsink Material : Aluminum

Finish : Black Anodized Coating

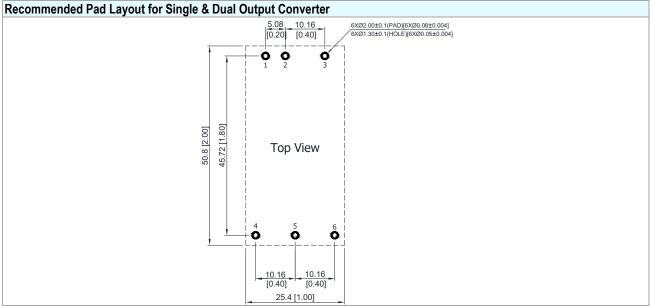
Weight : 9g

- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

Physical Characteristics

Heatsink Material : Aluminum

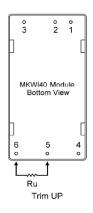
Finish : Black Anodized Coating


Weight : 9g

The advantages of adding a heatsink are:

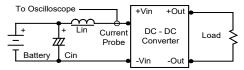
1. To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.

2. To increase operating temperature of the DC-DC

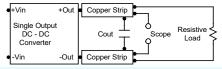

converter, please refer to Derating Curve.

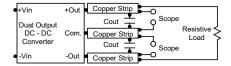
External Output Trimming

Output can be externally trimmed by using the method shown below


	MKWI40	-XXS033	MKWI40	-XXS05	MKWI40	-XXS12	MKWI40	-XXS15	MKWI40	-XXS24
Trim Range	Trim down	Trim up								
(%)	(kΩ)	$(k\Omega)$								
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	333.39	
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	148.80	243.70
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	87.26	
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	56.50	108.50
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	38.04	
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	25.73	63.43
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	16.94	
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	10.35	40.90
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	5.22	
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	1.12	27.38
12										18.37
14										11.93
16										7.10
18										3.34
20										0.34

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

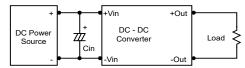
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

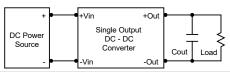
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 4.7V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 3) at logic high (2.5V to 100V) is 5µA.

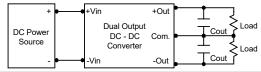
Overcurrent Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

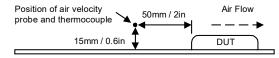
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $10\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.

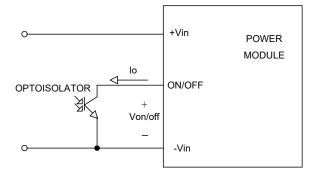


Maximum Capacitive Load

The MKWI40 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

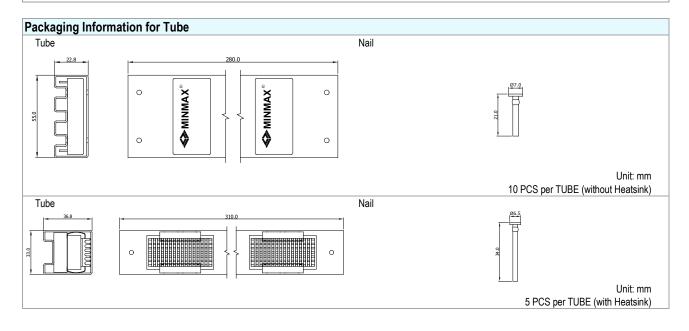
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

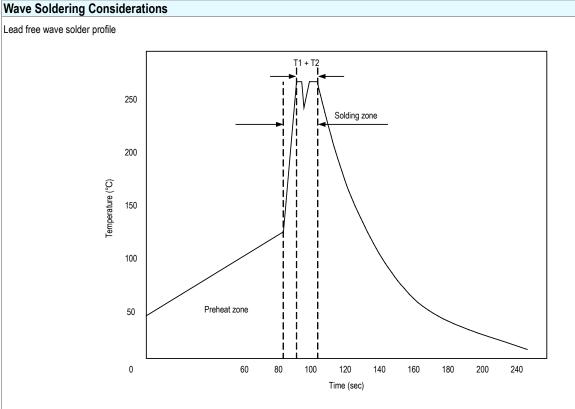



Remote ON/OFF Implementation

With suffix-RC, the positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.


Remote ON/OFF implementation

Isolated-Closure Remote ON/OFF



Level Control Using TTL Output

Date:2024-06-13 Rev:7

Zone	Reference Parameter			
Preheat	Rise temp. speed : 3°C/sec max.			
zone	Preheat temp.: 100~130°C			
Actual	Peak temp. : 250~260°C			
heating	Peak time(T1+T2): 4~6 sec			

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400°C

Part Number Structure M K WI 40 24 S 033 Package Type Ultra-wide 4:1 Output Quantity Output Power Input Voltage Range Output Voltage 2" X 1" Input Voltage Range 40 Watt VDC 24: 9 36 VDC S: Single 033: 3.3 VDC 48: 18 75 VDC D: Dual 05: 5 12: 12 VDC 15: 15 VDC 24: 24 VDC

MTBF and Reliability

The MTBF of MKWI40 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKWI40-24S033	720,784	
MKWI40-24S05	401,292	
MKWI40-24S12	343,923	
MKWI40-24S15	348,480	
MKWI40-24S24	541,511	
MKWI40-24D12	328,170	
MKWI40-24D15	339,416	l laure
MKWI40-48S033	603,205	Hours
MKWI40-48S05	346,962	
MKWI40-48S12	408,443	
MKWI40-48S15	396,294	
MKWI40-48S24	551,073	
MKWI40-48D12	330,268	
MKWI40-48D15	330,511	