

MKW15M Series

DC-DC CONVERTER 15W, Reinforced Insulation, Medical Safety

Features

- Industrial Standard 2" X 1" Package
- ▶ Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 4200VAC with Reinforced Insulation, rated for 300Vrms Working Voltage
- ► Low I/O Leakage Current < 5µA
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► EMI Emission EN 55011 Class A Approved
- ► Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking

S MINMAX® IN18-36VDC=:/1.01A-0.50A OUT5VDC=:/3000mA CKMKW15-24905M 1730 DC/DC CONVERTER S Us MINMAX® N18-36VDC=:/1.01A-0.50A OUT5VDC=:/3000mA CE W15-24905M 1730 CC ODC CONVERTER S Us

Electric Characteristic Note

Applications

- ➤ Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MKW15M series is a range of high performance 15W medical approved DC-DC converter within encapsulated 2''x1'' package which specifically design for medical applications. There are 21 models available for input voltage of 12, 24, 48VDC with wide 2:1 input range and fixed output voltage. The I/O isolation is specified for 4200VAC with reinforced insulation, which rated for 300Vrms working voltage. Further features include under-voltage, overload, over voltage, short circuit protection, no min. load requirement, EMI emission EN 55011 class A approved, low I/O leakage current 5µA max. and operating ambient temp. range by -40°C to 85°C by high efficiency up to 90%. MKW15M series conform to 4th edition medical EMC standard, medical safety with 2xMOPP (Means Of Patient Protection) per 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1 approved. The MKW15M series offer the best solution for demanding applications in medical instrument requesting a certified supplementary and reinforced insulation system to comply with latest medical safety approval for 2xMOPP requirement.

Table of contents

Model Selection Guide	P2	Package Specifications	P26
Input Specifications	P2	Recommended Pad Layout for Single & Dual Output Converter	P26
Output Specifications	P2	Test Setup	P27
Isolation, Safety Standards	P3	Technical Notes	P27
General Specifications	P3	Packaging Information	P28
EMC Specifications	P3	Wave Soldering Considerations	P28
Environmental Specifications	P4	Part Number Structure	P29
Characteristic Curves	P5	MTBF and Reliability	P29

www.minmax.com.tw Rev:5 2020/11/20 Page 1 of 29

Model Selection	Guide								
Model	Input	Output	Output Current	Input C	urrent	Reflected	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage				Ripple	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA (typ.)	mA(typ.)	VDC	μF	%
MKW15-12S05M		5	3000	1453			6.2	5100	86
MKW15-12S051M		5.1	3000	1483			6.2	5100	86
MKW15-12S12M	12	12	1250	1404			15	870	89
MKW15-12S15M	(9 ~ 18)	15	1000	1420	20	100	18	560	88
MKW15-12S24M	(9~10)	24	625	1420			27	220	88
MKW15-12D12M		±12	±625	1420			±15	440#	88
MKW15-12D15M		±15	±500	1404			±18	280#	89
MKW15-24S05M		5	3000	710			6.2	5100	88
MKW15-24S051M		5.1	3000	724			6.2	5100	88
MKW15-24S12M	24	12	1250	702			15	870	89
MKW15-24S15M	(18 ~ 36)	15	1000	702	15	50	18	560	89
MKW15-24S24M	(10~30)	24	625	694			27	220	90
MKW15-24D12M		±12	±625	694			±15	440#	90
MKW15-24D15M		±15	±500	702			±18	280#	89
MKW15-48S05M		5	3000	355			6.2	5100	88
MKW15-48S051M		5.1	3000	362			6.2	5100	88
MKW15-48S12M	48	12	1250	355			15	870	88
MKW15-48S15M	48 (36 ~ 75)	15	1000	347	10	30	18	560	90
MKW15-48S24M	(30 ~ 13)	24	625	351			27	220	89
MKW15-48D12M		±12	±625	351			±15	440#	89
MKW15-48D15M		±15	±500	355			±18	280#	88

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (100 ms max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		7.5		
Under Voltage Shutdown	24V Input Models		15		
	48V Input Models		33		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Internal	Pi Type	

www.minmax.com.tw Rev:5 2020/11/20 Page 2 of 29

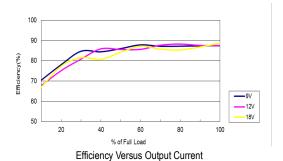
Output Specifications								
Parameter		Conditions	s / Mode	el	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy							±1.0	%Vnom
Output Voltage Balance		Dual Output, Ba	alanced	Loads			±2.0	%
Line Regulation		Vin=Min. to Ma	x. @Ful	l Load			±0.5	%
Lord Devilofes	1- 0	Single Output				±0.5	%	
Load Regulation	10=0	lo=0% to 100% Dual Output				±1.0	%	
Minimum Load				No minimum Lo	oad Requirem	ent		
	0.00.1411	5V & 5.1V	'o	NA		50		mV _{P-P}
Ripple & Noise	0-20 MHz	12V,15V, ±12V,	±15Vo	Measured with a		100		mV _{P-P}
	Bandwidth	24Vo		MLCC : 4.7µF		150		mV _{P-P}
Transient Recovery Time		050/ 1 1 04	0				300	μsec
Transient Response Deviation		25% Load Step Change ₍₂₎			±3	±5	%	
Temperature Coefficient							±0.02	%/°C
Over Load Protection		Hiccup			150		%	
Short Circuit Protection		(Continuo	ous, Automatic Reco	very (Hiccup N	Node 0.7Hz typ	o.)	

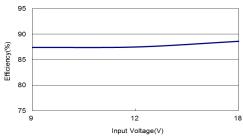
Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
	60 Seconds					
I/O Isolation Voltage	Reinforced insulation, rated for 300Vrms working	4200			VAC	
	voltage					
Leakage Current	240VAC, 60Hz			5	μA	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100kHz, 1V			80	pF	
Cofet Ctondondo	ANSI/AAMI ES60601-1,	CAN/CSA-C22.	2 No. 60601-1			
Safety Standards	IEC/EN 60601-1	3rd Edition 2xN	ИОРР			
Safety Approvals	ANSI/AAMI ES60601-1 2xMOPP recognition (U	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3rd Edition (CB-report)				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			285		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,428,181			Hours

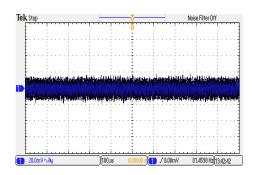
EMC Specifications				
Parameter		Standards & Le	evel	Performance
EMI	Conduction	EN 55011	Without external components	Class A
EIVII	Radiation	EIN DOUTI	Without external components	Class A
	EN 60601-1-2 4th			
	ESD	EN 61000-4-2 A	Air ± 15kV, Contact ± 8kV	Α
	Radiated immunity	EN 61	1000-4-3 10V/m	Α
EMS	Fast transient (5)	EN 6	1000-4-4 ±2kV	A
	Surge (5)	EN 6	1000-4-5 ±1kV	Α
	Conducted immunity	EN 61	000-4-6 10Vrms	Α
	PFMF	EN 61	000-4-8 100A/m	Α

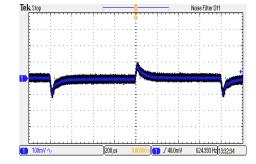
www.minmax.com.tw Rev:5 2020/11/20 Page 3 of 29

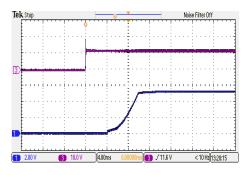

Environmental Specifications				
Parameter	Conditions / Model	Min.	Max.	Unit
	MKW15-24S24M, MKW15-24D12M, MKW15-48S15M		73	
	MKW15-12S12M, MKW15-12D15M, MKW15-24S12M			
	MKW15-24S15M, MKW15-24D15M, MKW15-48S24M		70	
Operating Ambient Temperature Range	MKW15-48D12	40		°C
Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	MKW15-12S15M, MKW15-12S24M, MKW15-12D12M	-40		
	MKW15-24S05M, MKW15-24S051M, MKW15-48S05M		67	
	MKW15-48S051M, MKW15-48S12M, MKW15-48D15M			
	MKW15-12S05M, MKW15-12S051M		62	
Thermal Impedance		13		°C/W
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Altitude			4000	М
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

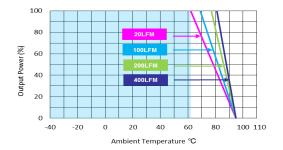

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 6 Specifications are subject to change without notice.


www.minmax.com.tw Rev:5 2020/11/20 Page 4 of 29

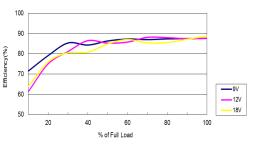

All test conditions are at 25°C The figures are identical for MKW15-12S05M

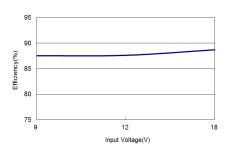

Efficiency Versus Input Voltage Full Load



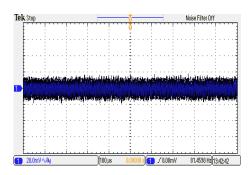
Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

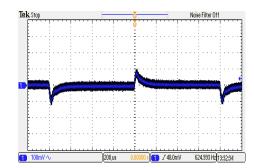
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

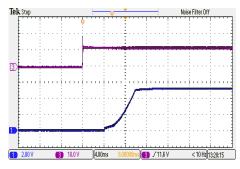


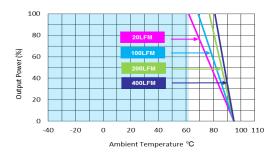

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

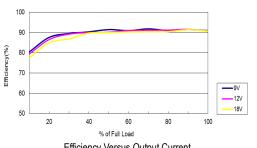

All test conditions are at 25°C $\,$ The figures are identical for MKW15-12S051M $\,$


Efficiency Versus Output Current

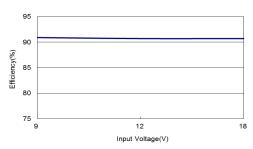

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

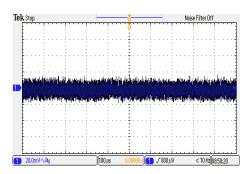
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

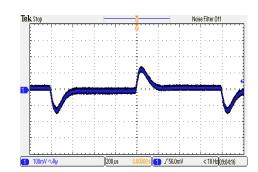


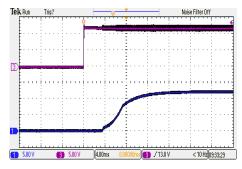
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

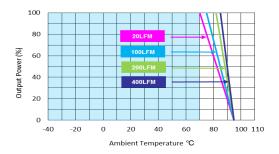


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

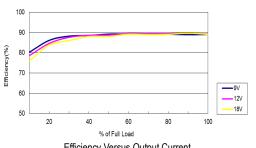

All test conditions are at 25°C The figures are identical for MKW15-12S12M


Efficiency Versus Output Current

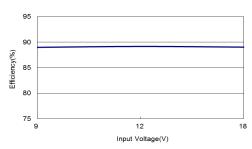

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

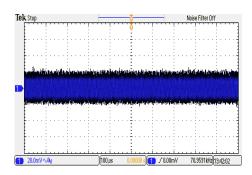
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

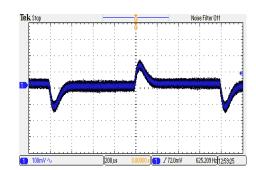


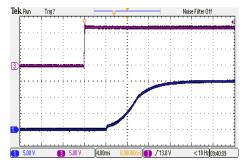
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

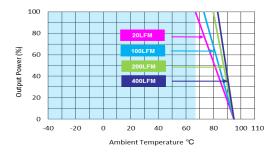


Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

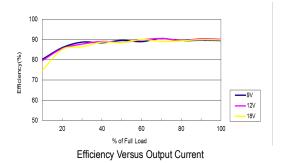

All test conditions are at 25° C The figures are identical for MKW15-12S15M

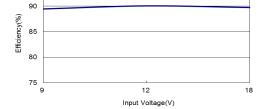

Efficiency Versus Output Current

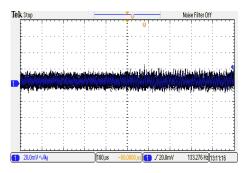

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

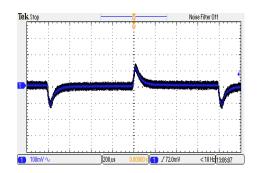
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

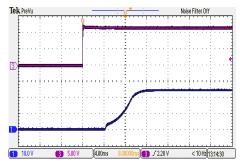


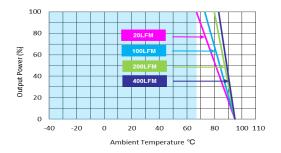

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load


Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in \ nom}$

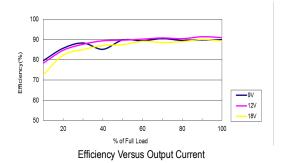
All test conditions are at 25°C The figures are identical for MKW15-12S24M

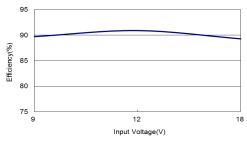


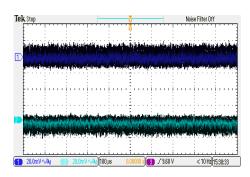

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

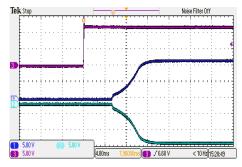
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

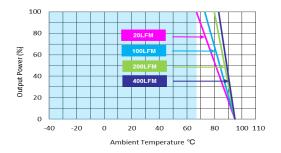



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

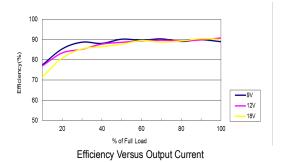

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

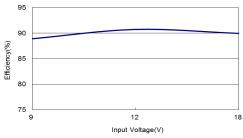
All test conditions are at 25°C $\,$ The figures are identical for MKW15-12D12M $\,$

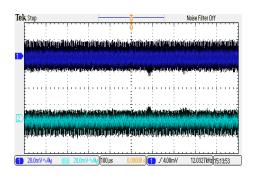

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

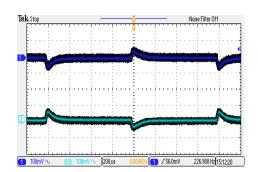
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

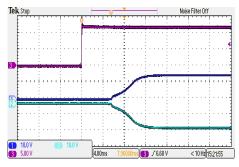


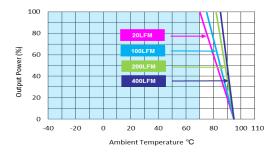

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

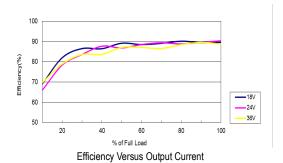
All test conditions are at 25°C $\,$ The figures are identical for MKW15-12D15M $\,$

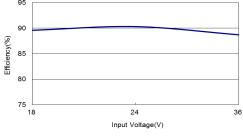


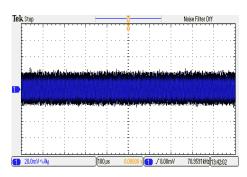

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

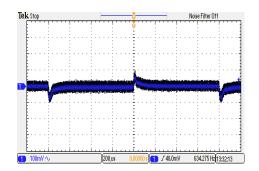
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in \, nom}$

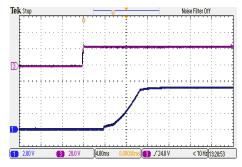


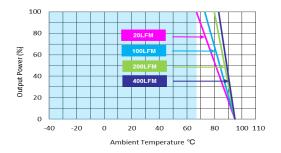

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in nom}} \, ; \, \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

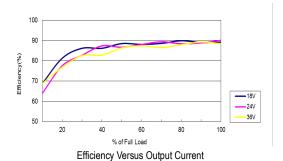
All test conditions are at 25° C The figures are identical for MKW15-24S05M

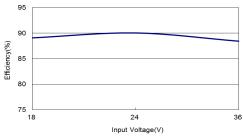


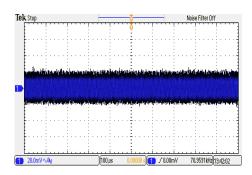

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

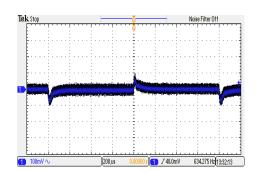
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

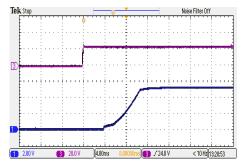


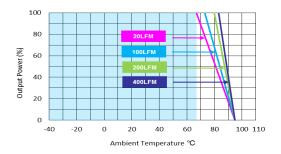

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

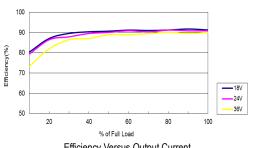
All test conditions are at 25°C $\,$ The figures are identical for MKW15-24S051M $\,$



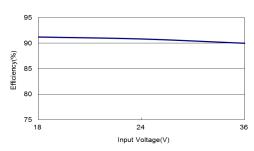

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

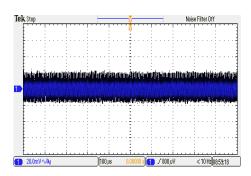
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

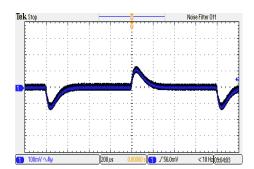


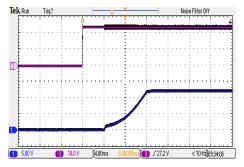
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

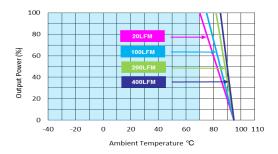


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

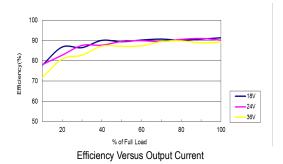

All test conditions are at 25°C The figures are identical for MKW15-24S12M

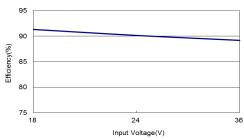

Efficiency Versus Output Current

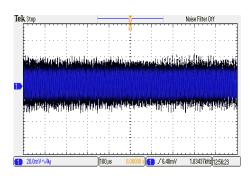

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

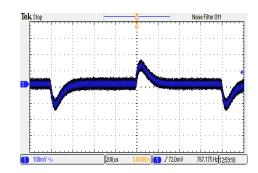
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

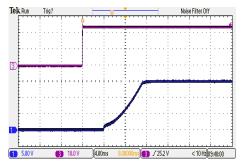


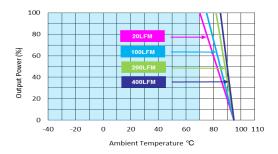

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load


Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in \ nom}$

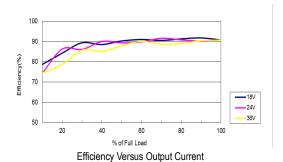
All test conditions are at 25° C The figures are identical for MKW15-24S15M

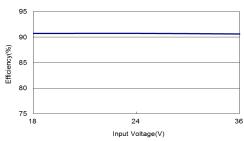


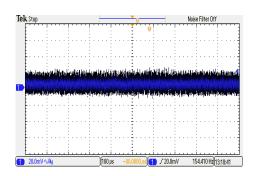

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

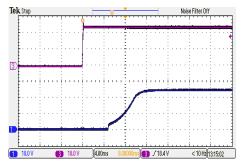
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

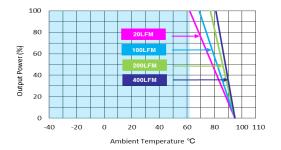



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

All test conditions are at 25°C The figures are identical for MKW15-24S24M

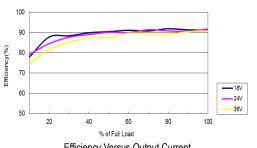

Efficiency Versus Input Voltage Full Load

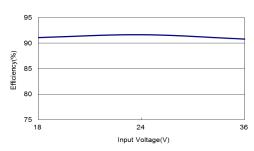


1 100mV ∿ 200.us 0.00003 7/2.0mV 530.336 Hg 1306yd

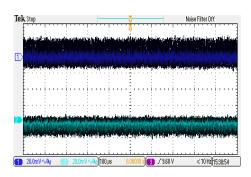
Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

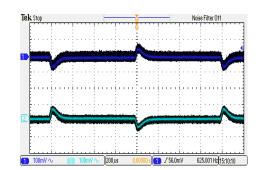
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

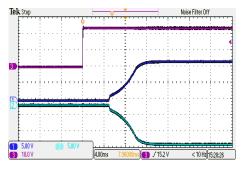


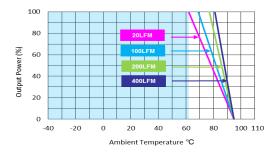

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

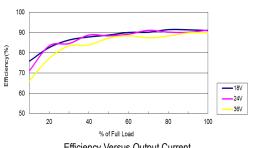

All test conditions are at 25°C $\,$ The figures are identical for MKW15-24D12M $\,$


Efficiency Versus Output Current

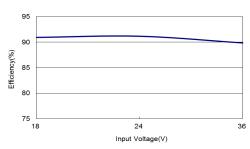

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

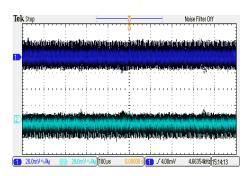
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

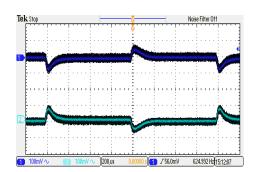


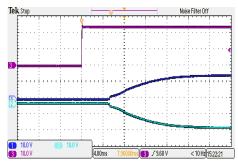
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

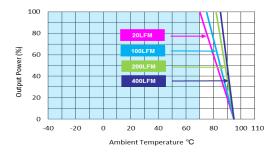


Derating Output Power Versus Ambient Temperature and Airflow $V_{in} = V_{in \ nom}$

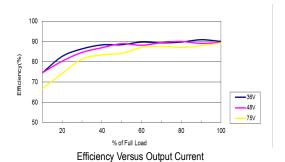

All test conditions are at 25°C $\,$ The figures are identical for MKW15-24D15M $\,$

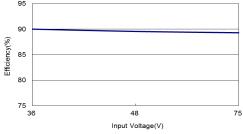

Efficiency Versus Output Current

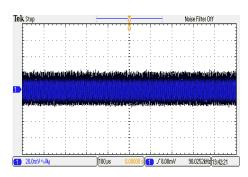

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

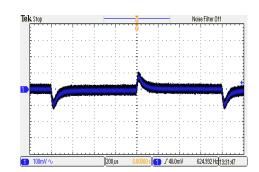
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

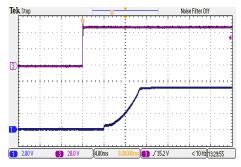


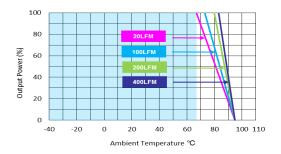

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load


Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

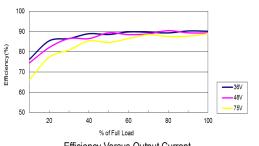
All test conditions are at 25° C The figures are identical for MKW15-48S05M



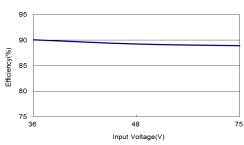

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

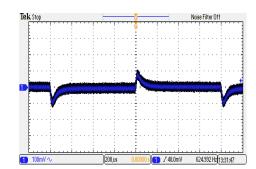


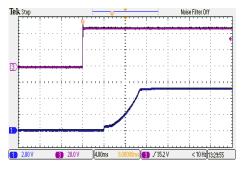
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

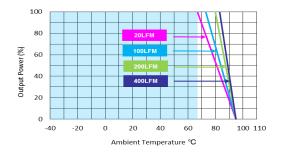


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

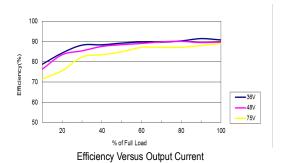

All test conditions are at 25°C $\,$ The figures are identical for MKW15-48S051M $\,$

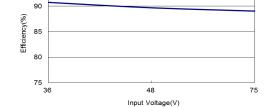

Efficiency Versus Output Current

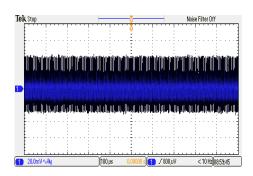

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

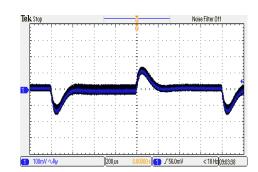
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$

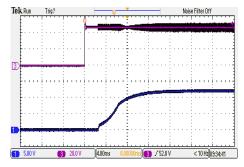


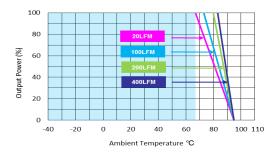

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load


Derating Output Power Versus Ambient Temperature and Airflow $V_{in}=V_{in nom}$

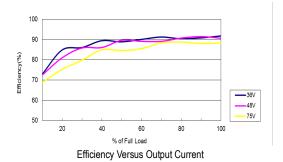
All test conditions are at 25°C The figures are identical for MKW15-48S12M

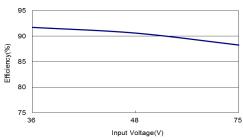


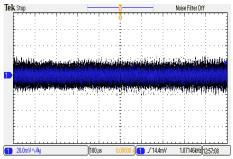

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in \, nom}$

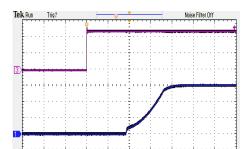



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

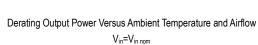

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

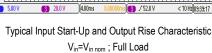
All test conditions are at 25° C The figures are identical for MKW15-48S15M

Efficiency Versus Input Voltage Full Load

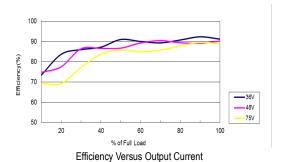


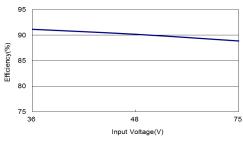
Typical Output Ripple and Noise

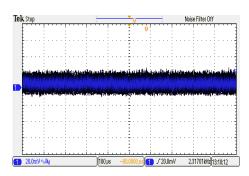

 $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


100

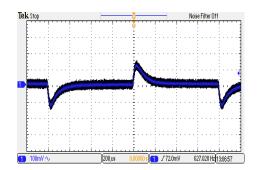
60

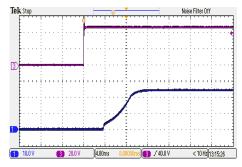


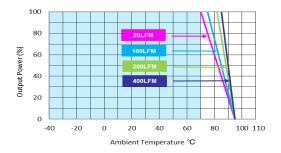

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$



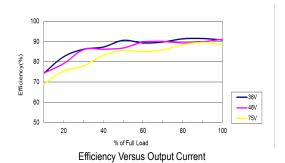
All test conditions are at 25°C The figures are identical for MKW15-48S24M

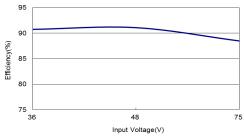


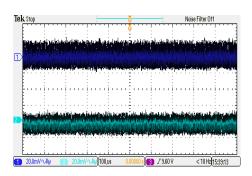

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in} \text{=} V_{in\,nom}\,;\, \text{Full Load}$

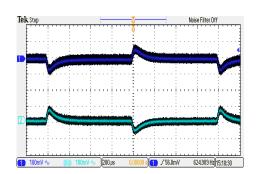
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

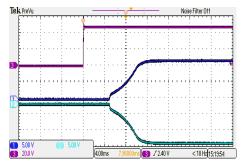


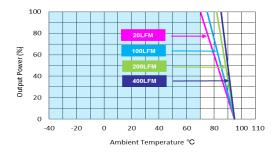

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

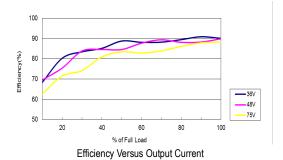
All test conditions are at 25°C $\,$ The figures are identical for MKW15-48D12M $\,$

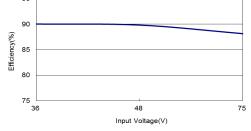


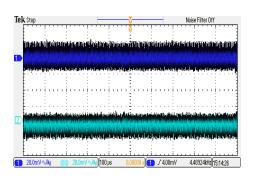

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

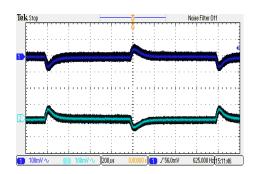
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

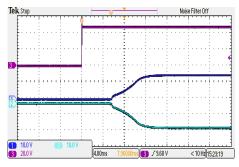


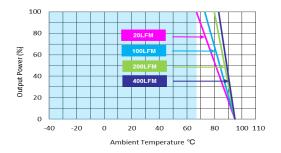

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

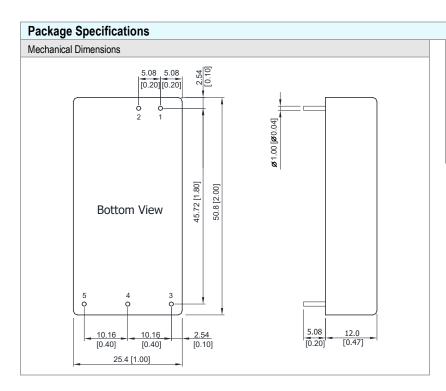

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

All test conditions are at 25°C $\,$ The figures are identical for MKW15-48D15M $\,$




Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

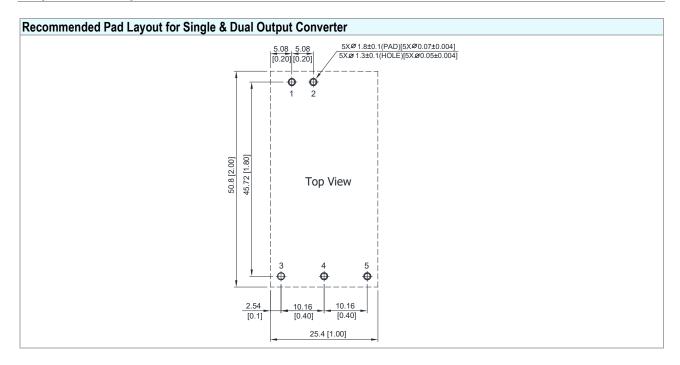
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Derating Output Power Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$

Pin Connections				
Pin	Single Output	Dual Output		
1	+Vin	+Vin		
2	-Vin	-Vin		
3	+Vout	+Vout		
4	No Pin	Common		
5	-Vout	-Vout		

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01)

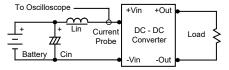
► Pin diameter Ø 1.0 ±0.05 (0.04±0.002)


Physical Characteristics

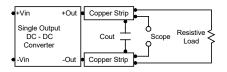
Case Size : 50.8x25.4x12.0mm (2.0x1.0x0.47 inches)

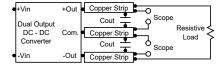
Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy with Tin Plate Over Nickel Subplate


Weight : 30g

Test Setup


Input Reflected-Ripple Current Test Setup

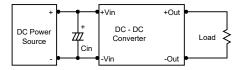

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 4.7µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

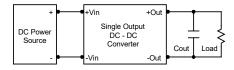
Technical Notes

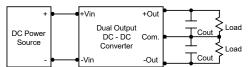
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration

Overvoltage Protection

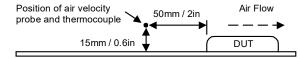
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

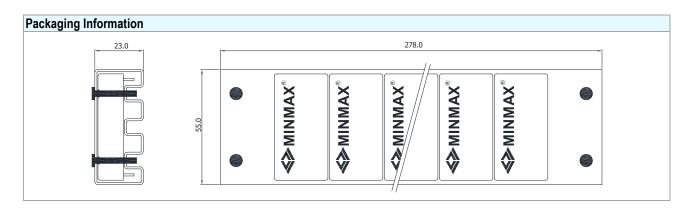

Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 12V input devices and a 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

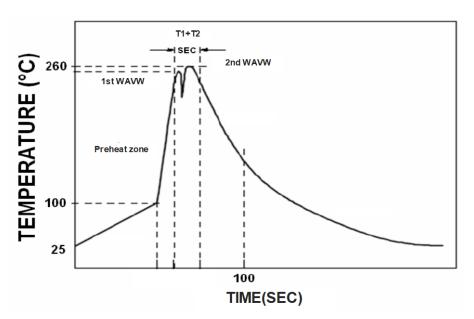
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



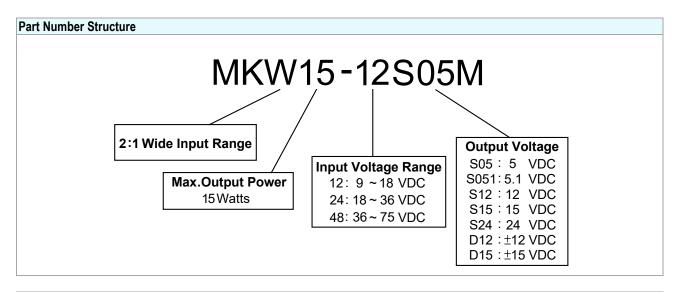

Maximum Capacitive Load

The MKW15M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Wave Soldering Considerations


Lead free wave solder profile

Profile Feature	Reference Parameter
Heating rate during preheat	Rise temp. speed: 3°C/sec max.
Final preheat temperature	Preheat temp.: 100~130°C
Peak temperature	Peak temp. : 250~260°C
Time within peak temperature	Peak time(T1+T2): 4~6 sec

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

MTBF and Reliability

The MTBF of MKW15M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKW15-12S05M	1,428,181	
MKW15-12S051M	1,428,181	
MKW15-12S12M	1,927,407	
MKW15-12S15M	2,026,516	
MKW15-12S24M	1,780,163	
MKW15-12D12M	1,780,163	
MKW15-12D15M	2,108,738	
MKW15-24S05M	1,646,820	
MKW15-24S051M	1,646,820	
MKW15-24S12M	1,975,949	
MKW15-24S15M	2,068,481	Hours
MKW15-24S24M	2,019,674	
MKW15-24D12M	2,019,674	
MKW15-24D15M	2,134,001	
MKW15-48S05M	1,749,638	
MKW15-48S051M	1,749,638	
MKW15-48S12M	1,866,230	
MKW15-48S15M	1,953,706	
MKW15-48S24M	1,809,937	
MKW15-48D12M	1,809,937	
MKW15-48D15M	2,031,988	1