

MKE20-HI Series EC Note

DC-DC CONVERTER 20W, Ultra-high I/O Isolation, 2"×1" Package

Features

- ► Industrial Standard 2"x1" Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Ultra-high I/O Isolation 8000VDC with Reinforced Insulation, rated for 1000Vrms Working Voltage
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► EMI Emission EN55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MKE20-HI series is a range of high performance 20W DC-DC converter within encapsulated 2"x1" package which specifically design for high isolation applications where reinforced insulation and high working voltage are required. There are 21 models available for input voltage of 12, 24, 48VDC with wide 2:1 input range and fixed output voltage. The I/O isolation is specified for 8000VDC with reinforced insulation, which rated for 1000Vrms working voltage. Further features include under-voltage, overload, over voltage, short circuit protection, no min. load requirement, EMI emission EN 55032 Class A approved, low I/O capacitance 80pF max. and operating ambient temp. range by -40°C to 80°C by high efficiency up to 90%. MKE20-HI series conform to UL/cUL/IEC/EN 62368-1 (60950-1) safety approvals. The MKE20-HI series offer a superior solution for demanding application in requesting a certified supplementary.

Table of contents

Model Selection Guide	P2	Recommended Pad Layout for Single & Dual Output Converter	P26
Input Specifications	P2	Test Setup	P27
Output Specifications	РЗ	Technical Notes	P27
Isolation, Safety Standards	P3	Packaging Information for Tube	P28
General Specifications			
EMC Specifications	РЗ	Hand Welding Parameter	P28
Environmental Specifications	P4	Part Number Structure	P29
Characteristic Curves	P5	MTBF and Reliability	P29
Package SpecificationsF	26	-	

Date:2024-06-20 Rev:5

Model Selection	Guide								
Model	Input	Output	Output	Inp	out	Reflected	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA (typ.)	mA(typ.)	VDC	μF	%
MKE20-12S05HI		5	4000	1961			6.2	6800	85
MKE20-12S051HI		5.1	4000	2000			6.2	6600	85
MKE20-12S12HI	40	12	1670	1898			15	1160	88
MKE20-12S15HI	12	15	1333	1893	20	100	18	750	88
MKE20-12S24HI	(9 ~ 18)	24	840	1888			27	295	89
MKE20-12D12HI		±12	±840	1888			±15	590#	89
MKE20-12D15HI		±15	±670	1882			±18	380#	89
MKE20-24S05HI		5	4000	958			6.2	0000	87
MKE20-24S051HI		5.1	4000	977			6.2	6800	87
MKE20-24S12HI	24	12	1670	949			15	1160	88
MKE20-24S15HI	(18 ~ 36)	15	1333	936	15	50	18	750	89
MKE20-24S24HI	(10 ~ 30)	24	840	933			27	295	90
MKE20-24D12HI		±12	±840	933			±15	590#	90
MKE20-24D15HI		±15	±670	931			±18	380#	90
MKE20-48S05HI		5	4000	479			6.2	6800	87
MKE20-48S051HI		5.1	4000	489			6.2	6800	87
MKE20-48S12HI	48	12	1670	474			15	1160	88
MKE20-48S15HI	(36 ~ 75)	15	1333	463	10	30	18	750	90
MKE20-48S24HI	(30 ~ 75)	24	840	472			27	295	89
MKE20-48D12HI		±12	±840	472			±15	590#	89
MKE20-48D15HI		±15	±670	465			±18	380#	90

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (100 ms max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		7.5		
Under Voltage Shutdown	24V Input Models		15		
	48V Input Models		33		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Interna	l Pi Type	

Date:2024-06-20 Rev:5

Output Specifications								
Parameter		Conditions / Model		Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy							±1.0	%Vnom.
Output Voltage Balance		Dual Output, E	Balanced L	oads			±2.0	%
Line Regulation		Vin=Min. to Ma	ax. @Full	Load			±0.5	%
Land Barriage	1- 00/	Single Output				±0.5	%	
Load Regulation	10=0%	lo=0% to 100% Dual Output				±1.0	%	
Minimum Load		No minimum Loa		d Requiremer	nt			
	0.00 1411	5V & 5.	1Vo	Marana da 20a		50		mV _{P-P}
Ripple & Noise	0-20 MHz	12V,15V, ±12	V, ±15Vo	Measured with a		100		mV _{P-P}
	Bandwidth	24Vo		MLCC : 4.7µF		150		mV _{P-P}
Transient Recovery Time		050/ 1 1 0	Ob				300	μsec
Transient Response Deviation		25% Load Step Change ₍₂₎			±3	±5	%	
Temperature Coefficient						±0.02	%/°C	
Over Load Protection		Hiccup			150		%	
Short Circuit Protection		(Continuous	s, Automatic Recove	ery (Hiccup Mo	ode 0.7Hz typ.)	

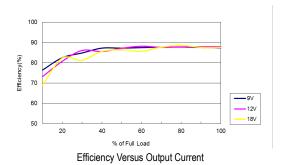
Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
	60 Seconds	4200			VAC	
I/O Isolation Voltage	Reinforced insulation, rated for 1000Vrms working voltage	4200			VAC	
	Tested for 1 second	8000			VDC	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100kHz, 1V			80	pF	
Cofet. Annual	UL/cUL 60950-1 recognition (UL certif	ficate), IEC/EN	N 60950-1 (CB	-report)		
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)					

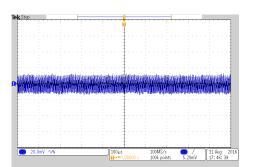
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			285		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,087,344			Hours

EMC Specifications				
Parameter		Standards & Level		
EMI	Conduction EN 55032		Without outsmal components	Class A
EIVII	Radiation	EIN 33032	Without external components	Class A
	EN 55035			
	ESD	Direct discharge	Indirect discharge HCP & VCP	A
	E9D	EN 61000-4-2 Air ± 15kV	Contact ± 8kV	A
EMC	Radiated immunity	EN 610	00-4-3 10V/m	A
EMS ₍₅₎	Fast transient	EN 610	000-4-4 ±2kV	A
	Surge	EN 610	000-4-5 ±1kV	Α
	Conducted immunity	EN 6100	A	
	PFMF	EN 6100	00-4-8 100A/m	A

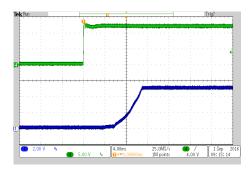
Date:2024-06-20 Rev:5 MKE20-HI Series – EC Notes 3

Environmental Specifications				
Parameter	Conditions / Model	Min.	Max.	Unit
	MKE20-24S24HI, MKE20-24D12HI, MKE20-24D15HI MKE20-48S15HI, MKE20-48D15HI		66	
Operating Ambient Temperature Range	MKE20-12S24HI, MKE20-12D12HI, MKE20-12D15HI MKE20-24S15HI, MKE20-48S24HI, MKE20-48D12HI	62		
Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	MKE20-12S12HI, MKE20-12S15HI, MKE20-24S12HI MKE20-48S12HI	-40	59	°C
	MKE20-24S05HI, MKE20-24S051HI, MKE20-48S05HI MKE20-48S051HI		55	
	MKE20-12S05HI, MKE20-12S051HI		48	
Thermal Impedance		13.0		°C/W
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Altitude			4000	m
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

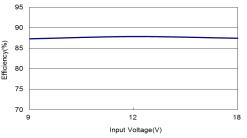

Notes

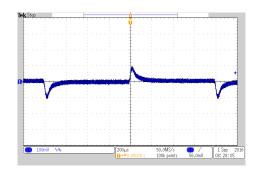

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

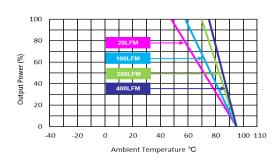
Date:2024-06-20 Rev:5 MKE20-HI Series – EC Notes 4



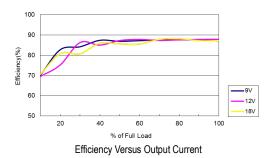
All test conditions are at 25°C $\,$ The figures are identical for MKE20-12S05HI $\,$

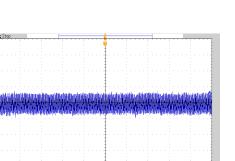



Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

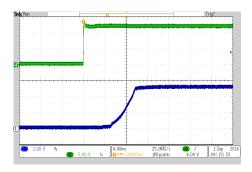

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Efficiency Versus Input Voltage Full Load

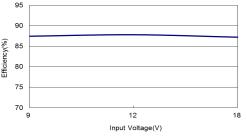

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

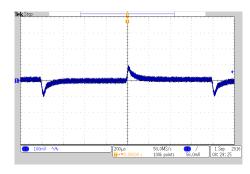


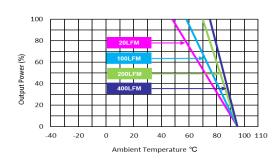
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



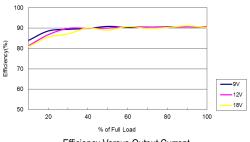
All test conditions are at 25°C The figures are identical for MKE20-12S051HI

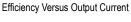


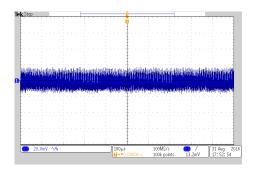

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

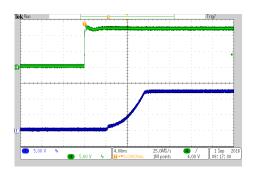
Efficiency Versus Input Voltage Full Load

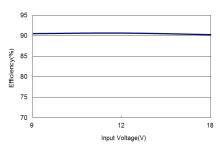

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$



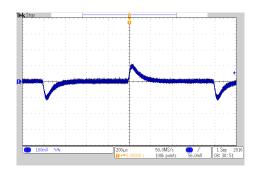

Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

All test conditions are at 25°C $\,$ The figures are identical for MKE20-12S12HI $\,$

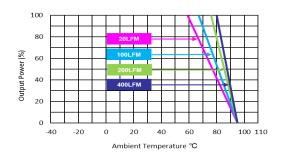




Typical Output Ripple and Noise

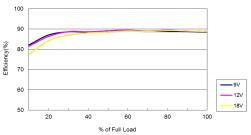

V_{in}=V_{in nom}; Full Load

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

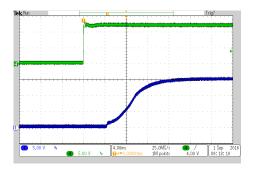


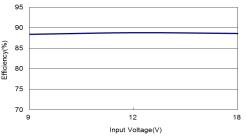
Efficiency Versus Input Voltage Full Load

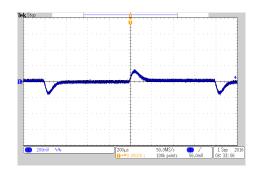
Transient Response to Dynamic Load Change

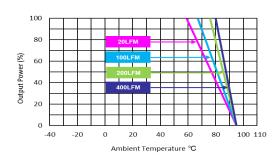

from 100% to 75% of Full Load; $V_{in}=V_{in nom}$

Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

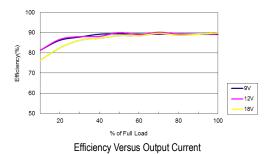

All test conditions are at 25°C $\,$ The figures are identical for MKE20-12S15HI $\,$

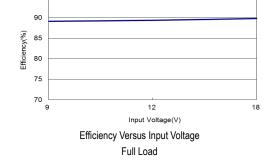

Efficiency Versus Output Current

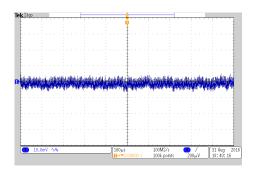

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

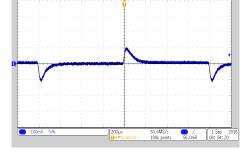

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

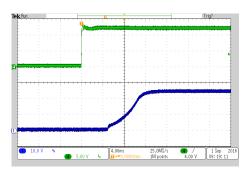

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

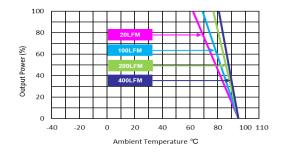



Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



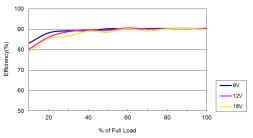
All test conditions are at 25°C The figures are identical for MKE20-12S24HI



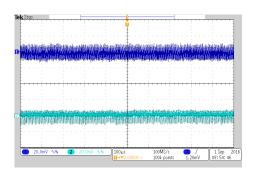


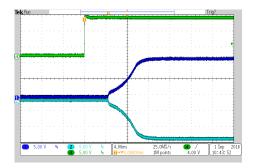
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

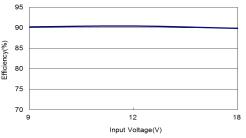
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

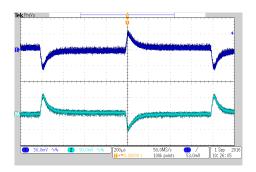


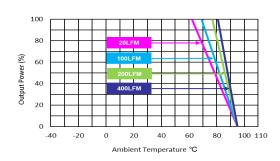
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

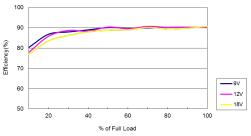

All test conditions are at 25°C $\,$ The figures are identical for MKE20-12D12HI $\,$

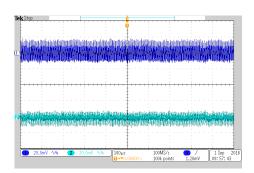

Efficiency Versus Output Current

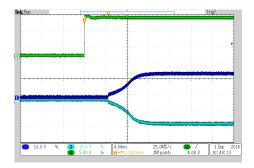

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

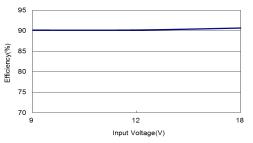

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

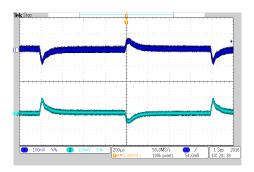
Efficiency Versus Input Voltage Full Load

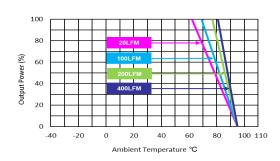

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

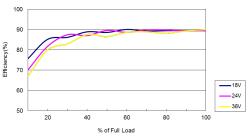

All test conditions are at 25°C $\,$ The figures are identical for MKE20-12D15HI

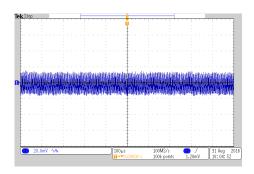

Efficiency Versus Output Current

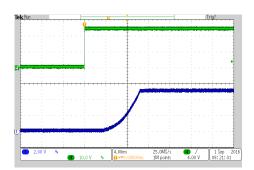

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

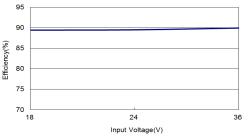

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

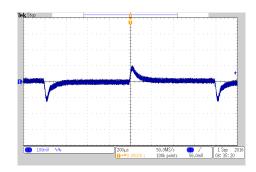
Efficiency Versus Input Voltage Full Load

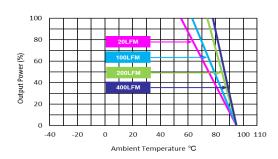

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in} = $V_{\text{in nom}}$

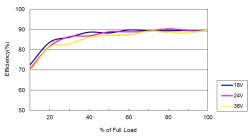

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24S05HI

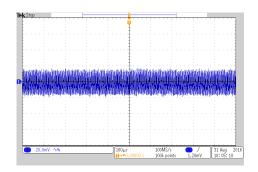

Efficiency Versus Output Current

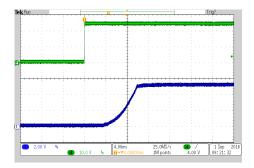

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

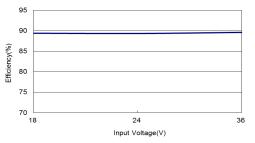

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

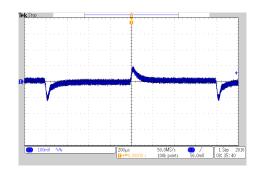
Efficiency Versus Input Voltage Full Load

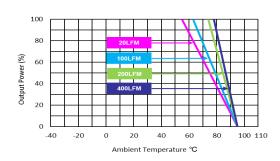

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

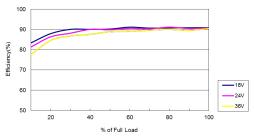

All test conditions are at 25°C The figures are identical for MKE20-24S051HI

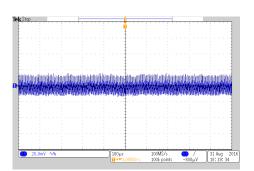

Efficiency Versus Output Current

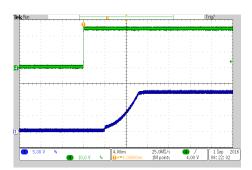

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

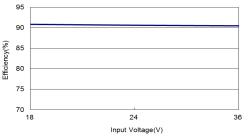

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

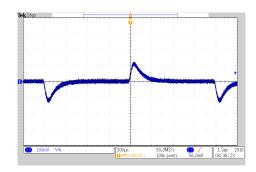
Efficiency Versus Input Voltage Full Load

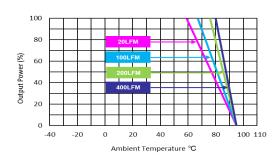

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

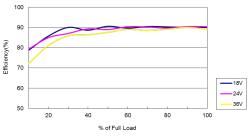

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24S12HI $\,$

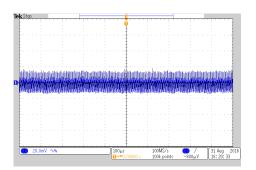

Efficiency Versus Output Current

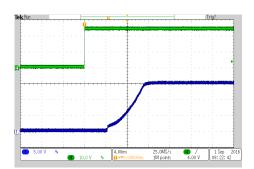

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

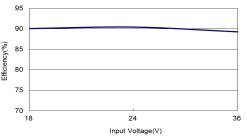

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

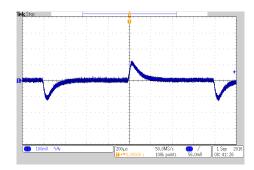
Efficiency Versus Input Voltage Full Load

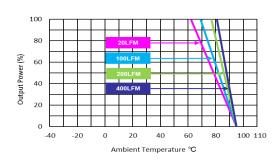

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

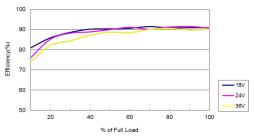

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24S15HI $\,$

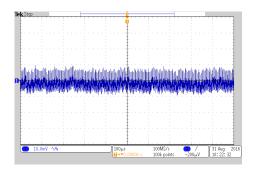

Efficiency Versus Output Current

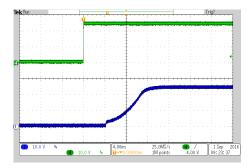

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

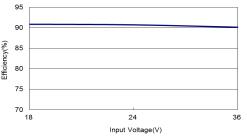

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

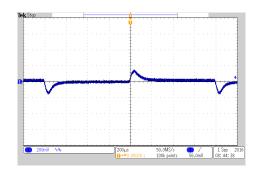
Efficiency Versus Input Voltage Full Load

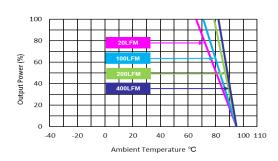

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

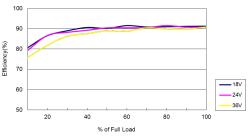

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24S24HI $\,$

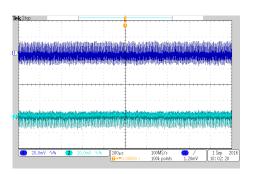

Efficiency Versus Output Current

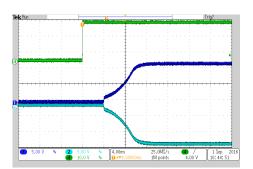

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

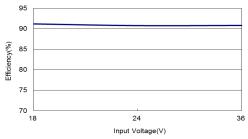

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

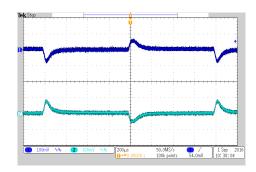
Efficiency Versus Input Voltage Full Load

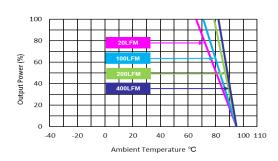

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

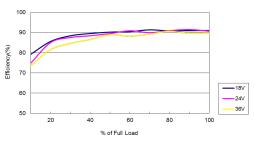

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24D12HI $\,$

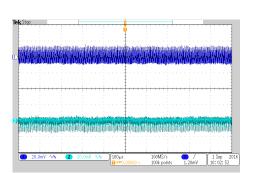

Efficiency Versus Output Current

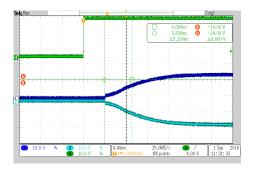

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

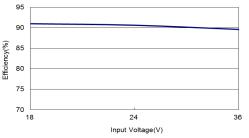

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

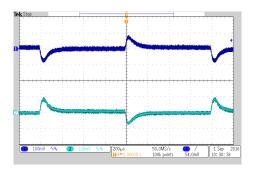
Efficiency Versus Input Voltage Full Load

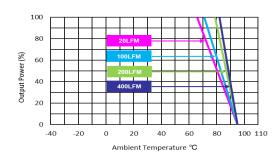

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

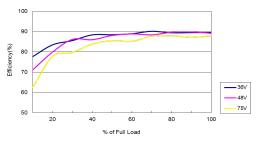

All test conditions are at 25°C $\,$ The figures are identical for MKE20-24D15HI $\,$

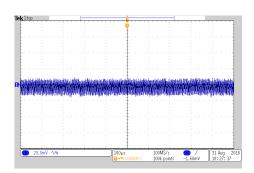

Efficiency Versus Output Current

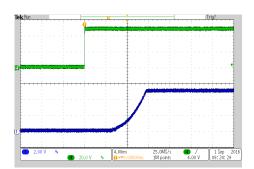

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

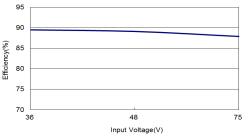

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

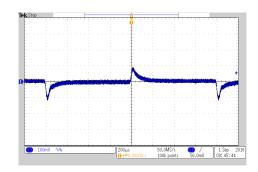
Efficiency Versus Input Voltage Full Load

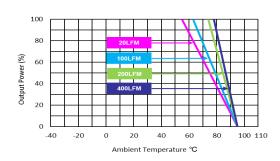

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in} = $V_{\text{in nom}}$

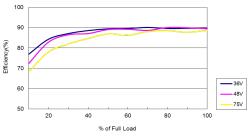

All test conditions are at 25°C $\,$ The figures are identical for MKE20-48S05HI $\,$

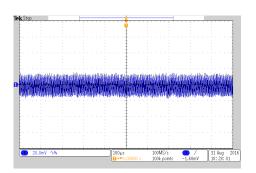

Efficiency Versus Output Current

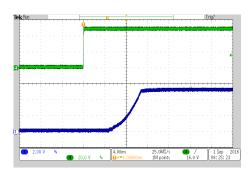

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

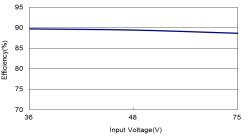

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

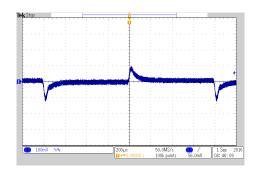
Efficiency Versus Input Voltage Full Load

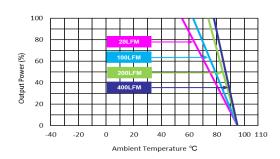

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

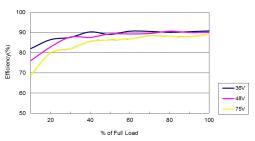

All test conditions are at 25°C The figures are identical for MKE20-48S051HI

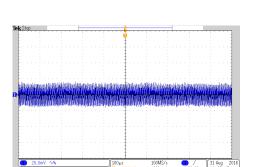

Efficiency Versus Output Current

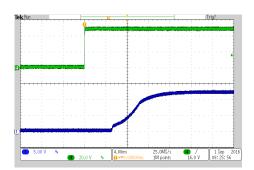

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

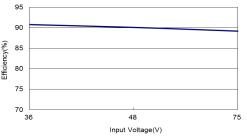

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

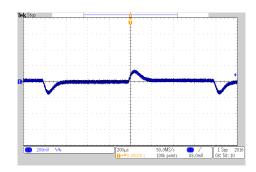
Efficiency Versus Input Voltage Full Load

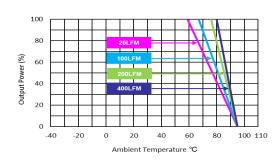

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

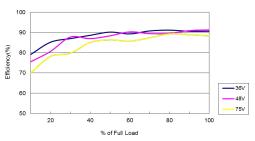

All test conditions are at $25^{\circ}C$ The figures are identical for MKE20-48S12HI

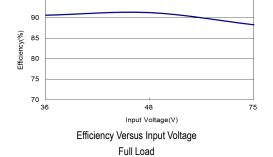

Efficiency Versus Output Current

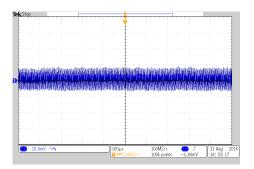

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

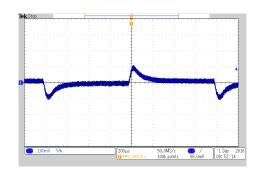
Efficiency Versus Input Voltage Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

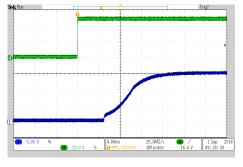

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

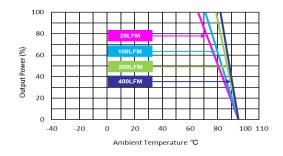


All test conditions are at 25°C $\,$ The figures are identical for MKE20-48S15HI $\,$

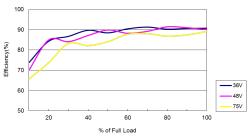


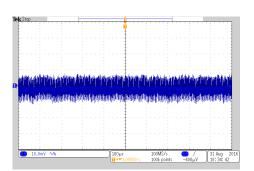
Efficiency Versus Output Current

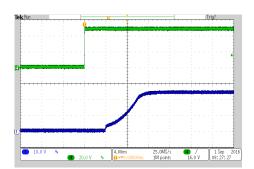


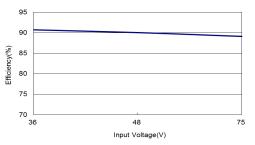

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

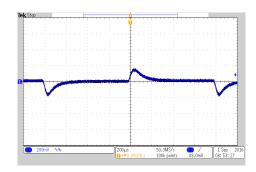
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

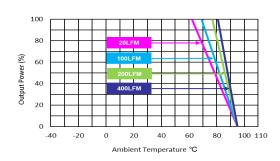

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

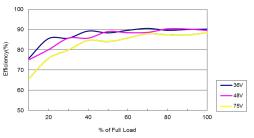

All test conditions are at 25°C $\,$ The figures are identical for MKE20-48S24HI $\,$

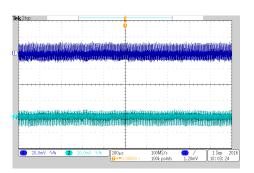

Efficiency Versus Output Current

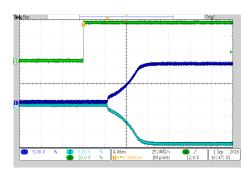

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

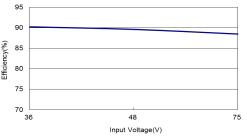

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

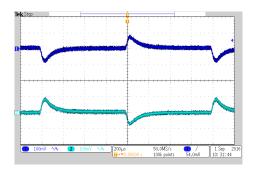
Efficiency Versus Input Voltage Full Load

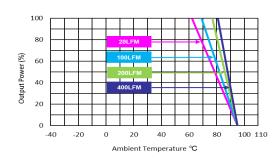

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

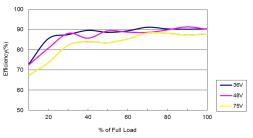

All test conditions are at 25°C $\,$ The figures are identical for MKE20-48D12HI $\,$

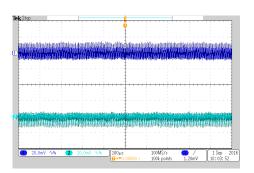

Efficiency Versus Output Current

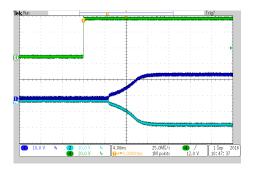

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

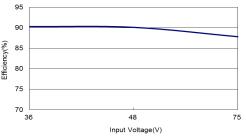

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

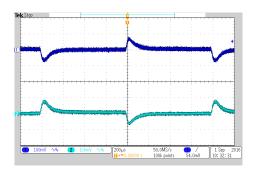
Efficiency Versus Input Voltage Full Load

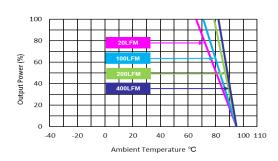

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MKE20-48D15HI


Efficiency Versus Output Current


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)	
1	+Vin	+Vin	Ø 1.0 [0.04]	
2	-Vin	-Vin	Ø 1.0 [0.04]	
3	+Vout	+Vout	Ø 1.0 [0.04]	
4	No Pin	Common	Ø 1.0 [0.04]	
5	-Vout	-Vout	Ø 1.0 [0.04]	

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

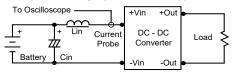
10.16 [0.400]

10.16 [0.400]

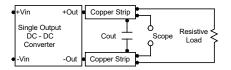
Case Size : 50.8x25.4x12.0mm (2.0x1.0x0.47 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

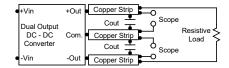
2.54 [0.100]

Pin Material : Copper Alloy Weight : 30g


12.0 [0.47]

Test Setup


Input Reflected-Ripple Current Test Setup

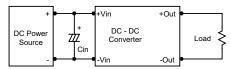

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 4.7µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

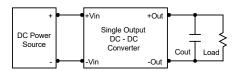
Technical Notes

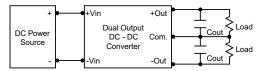
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

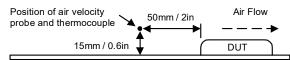
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

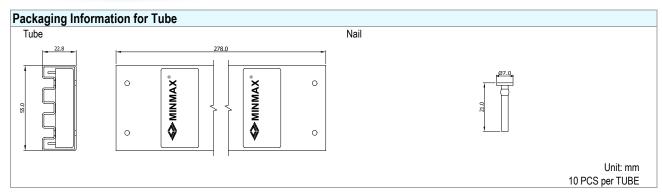

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 12V input devices and a 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

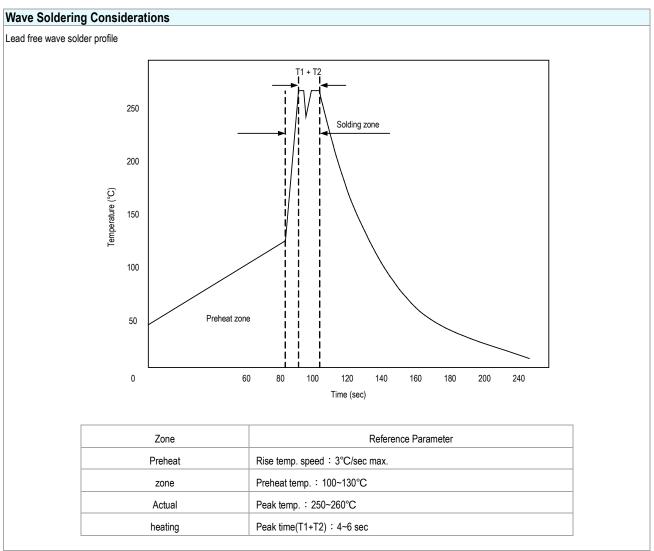
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.

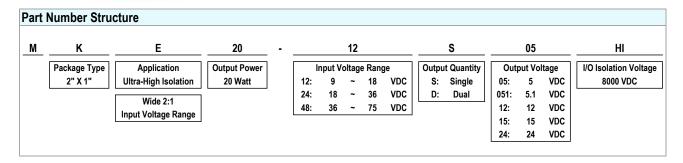


Maximum Capacitive Load


The MKE20-HI series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.



Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

MTBF and Reliability

The MTBF of MKE20-HI series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKE20-12S05HI	1,087,344	
MKE20-12S051HI	1,087,344	
MKE20-12S12HI	1,598,916	
MKE20-12S15HI	1,655,302	
MKE20-12S24HI	1,565,185	
MKE20-12D12HI	1,565,185	
MKE20-12D15HI	1,758,649	
MKE20-24S05HI	1,308,922	
MKE20-24S051HI	1,308,922	
MKE20-24S12HI	1,639,993	
MKE20-24S15HI	1,691,078	Hours
MKE20-24S24HI	1,708,823	
MKE20-24D12HI	1,708,823	
MKE20-24D15HI	1,780,647	
MKE20-48S05HI	1,419,400	
MKE20-48S051HI	1,419,400	
MKE20-48S12HI	1,641,012	
MKE20-48S15HI	1,692,282	
MKE20-48S24HI	1,474,814	
MKE20-48D12HI	1,474,814	
MKE20-48D15HI	1,793,561	