

MJWI30 Series EC Note

DC-DC CONVERTER 30W, Highest Power Density

Features

- ► Smallest Encapsulated 30W Converter
- ► Ultra-compact 1"×1" Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 90%
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- ► Very low no load power consumption
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MJWl30 series is the latest range of a new generation of 30Watt isolated DC-DC power modules with ultra-wide input range of 9-36 / 18-75Vin and 14 models available for 3.3/5/12/15/24/±15VDC tightly output voltage in a highest power density 75W/in³ and ultra-compact size with dimensions of just 1.0"x1.0"x0.4" shielded and encapsulated package. Key performance featuring high efficiency up to 90%, operating ambient temp. range of -40°C to +80°C, no min. load requirement, very low no-load power consumption, remote on/off, output voltage trim, build-in fault condition protection include under-voltage, overload, over voltage and short circuit protection.

The MJWl30 series has been intensely qualified to safety approval UL/cUL/IEC/EN 62368-1 with CB report and CE marking which offer a solution for the applications where wide input voltage range, high efficiency for wide operating ambient temp. range, isolated power with fault condition protection, shield and encapsulated package and very board space limited / critical are required.

Model Selection GuideP2	2 External Output Trimming	P20
Input SpecificationsP2	2 Test Setup	P21
Remote On/Off ControlP2	2 Technical Notes	P21
Output SpecificationsP3	Remote On/Off Implementation	P22
General SpecificationsP3	Packaging Information for Tube	P22
EMC SpecificationsP3	3 Wave Soldering Considerations	P23
Environmental SpecificationsP4	Hand Welding Parameter	P23
Characteristic Curves Pt	Part Number Structure	P24
Package SpecificationsP19	MTBF and Reliability	P24
Recommended Pad Layout for Single & Dual Output ConverterP20		

Model Selection G	Guide							
Model	Input	Output	Output		out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MJWI30-24S033		3.3	7000	1106	10	3.9	10000	87
MJWI30-24S05		5	6000	1420	10	6.2	7200	88
MJWI30-24S12	04	12	2500	1420	10	15	1250	88
MJWI30-24S15	24	15	2000	1420	10	18	800	88
MJWI30-24S24	(9 ~ 36)	24	1250	1420	10	30	330	88
MJWI30-24D12		±12	±1250	1420	10	±15	680#	88
MJWI30-24D15		±15	±1000	1404	10	±18	470#	88
MJWI30-48S033		3.3	7000	553	8	3.9	10000	87
MJWI30-48S05		5	6000	702	8	6.2	7200	88
MJWI30-48S12	40	12	2500	702	8	15	1250	90
MJWI30-48S15	48 (18 ~ 75)	15	2000	702	8	18	800	90
MJWI30-48S24		24	1250	694	8	30	330	90
MJWI30-48D12		±12	±1250	694	8	±15	680#	90
MJWI30-48D15		±15	±1000	694	8	±18	470#	90

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Instit Company (400mm many)	24V Input Models	-0.7		50	
Input Surge Voltage (100ms max.)	48V Input Models	-0.7		100	VDC
Start-Up Threshold Voltage	24V Input Models		9		VDC
	48V Input Models			18	
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Internal Pi Type		

Remote On/Off Control							
Parameter	Conditions	Тур.	Max.	Unit			
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V ~ 1.2V or Short Circuit						
Control Input Current (on)	Vctrl = 5.0V			0.5	mA		
Control Input Current (off)	Vctrl = 0V			-0.5	mA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		2		mA		

Date:2024-05-10 Rev:12 MJWI30 Series – EC Notes 2

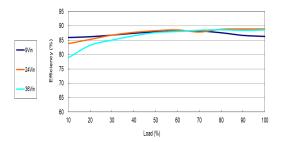
Output Specifications							
Parameter	Conditions /	Conditions / Model		Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%Vnom.	
Output Voltage Balance	Dual Output, Bala	anced Loads			±2.0	%	
Line Deculation	Vin-Min to May @Full load	Single Output			±0.2	%	
Line Regulation	Vin=Min. to Max. @Full Load	Dual Output			±0.5	%	
Load Danielia	la=00/ ta 4000/	Single Output			±0.2	%	
Load Regulation	lo=0% to 100%	Dual Output			±1.0	%	
Cross Regulation (Dual)	Asymmetrical Load 2	Asymmetrical Load 25% / 100% FL				%	
Minimum Load		No minimum Load Requirement					
Ripple & Noise	20 MHz Bandwidth	Measured with a $0.1 \mu F/50V$ MLCC and a $47 \mu F/50V$ MLCC.			75	mV _{P-P}	
Transient Recovery Time	05% 101	01		250		μsec	
Transient Response Deviation	25% Load Ste	p Change		±3	±5	%	
Temperature Coefficient					±0.02	%/°C	
Trim Up / Down Range	% of Nominal Ou	% of Nominal Output Voltage			±10	%	
Over Load Protection	Hiccup	Hiccup		150		%	
Over Voltage Protection	Zener Diode	Zener Diode Clamp		125		% of Vo	
Short Circuit Protection	Co	ontinuous, Automatic Recov	ery (Hiccup M	ode 0.6Hz typ.)		

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
NO la alatia a Malta na	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
Isolation Voltage Input/Output to case	60 Seconds	1000			VDC	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100kHz, 1V			1500	pF	
	3.3 Vo Models	158	175	193	kHz	
Switching Frequency	5 Vo Models	223	248	273	kHz	
	12 & 15 & 24 & Dual Vo Models	257	285	314	kHz	
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign 1,310,710 Ho				Hours	
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1					

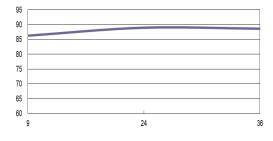
EMC Specifications								
Parameter		Standards & Level Performan						
EMI ₍₅₎	Conduction	EN 55032	With external components	Class A				
EIVII(5)	Radiation	EN 55032	with external components	Class A				
	EN 55035							
	ESD	Direct discharge	Indirect discharge HCP & VCP	^				
	E9D	EN61000-4-2 Air ± 8kV, Contact ± 6kV	Contact ± 6kV	A				
EMS	Radiated immunity	EN 61000-4-3	Α					
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		Α				
	Surge	EN 61000-4-5	Α					
	Conducted immunity	EN 61000-4-6 1	Α					
	PFMF	EN61000-4-8 100A/m Continu	A					

Date:2024-05-10 Rev:12 MJWI30 Series – EC Notes 3

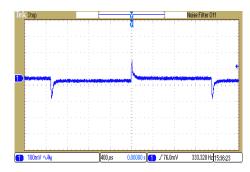
Environmental Specifications						
Darameter	Model		Ma	ax.		
Parameter		Min.	without Heatsink	with Heatsink	Unit	
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom.	MJWI30-24S05, MJWI30-24S12, MJWI30-24S15 MJWI30-24S24, MJWI30-24D12, MJWI30-24D15 MJWI30-48S05	-40	60	65	°C	
(for Power Derating see relative Derating Curves)	MJWI30-24S033, MJWI30-48S033, MJWI30-48S12 MJWI30-48S15, MJWI30-48S24, MJWI30-48D12 MJWI30-48D15	-40	65	70		
Case Temperature			+1	05	°C	
Storage Temperature Range		-55	+1	25	°C	
Humidity (non condensing)			9	5	% rel. H	
Lead Temperature (1.5mm from case for 10 sec.)			26	60	°C	

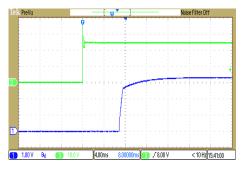

Notes

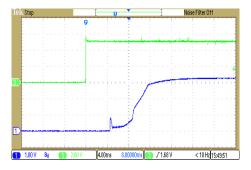
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

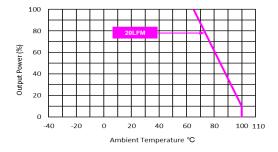

Date:2024-05-10 Rev:12 MJWI30 Series – EC Notes 4


All test conditions are at 25°C The figures are identical for MJWI30-24S033

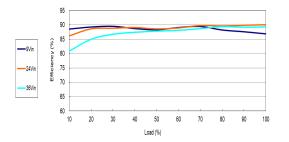

Efficiency Versus Output Current

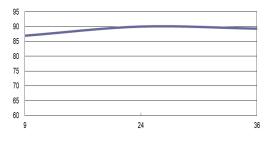

Efficiency Versus Input Voltage Full Load

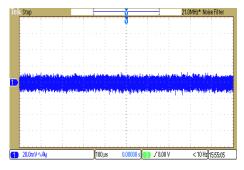

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

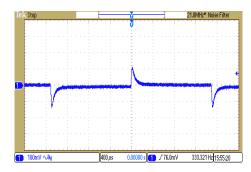

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

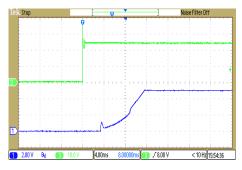
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

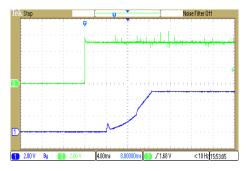

ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

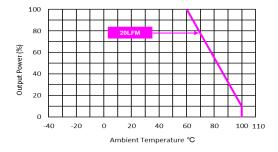

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-24S05

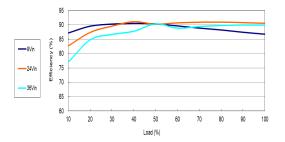

Efficiency Versus Output Current

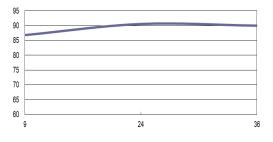

Efficiency Versus Input Voltage Full Load

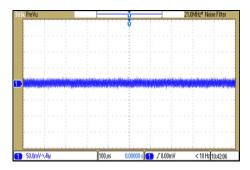

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

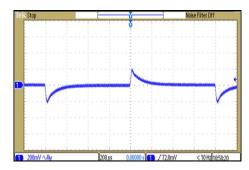

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

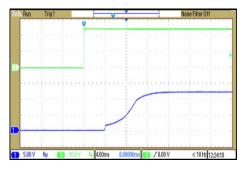
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

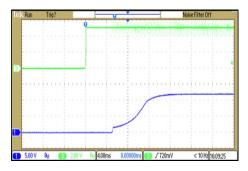

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

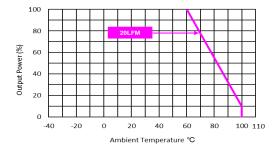

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MJWI30-24S12

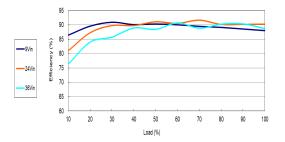

Efficiency Versus Output Current

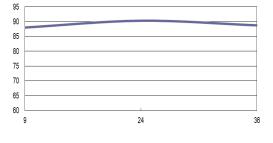

Efficiency Versus Input Voltage Full Load

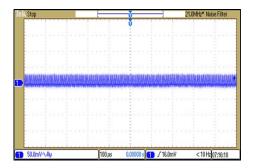

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

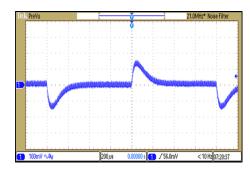

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

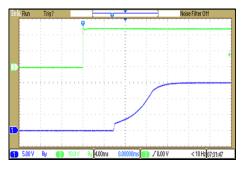
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

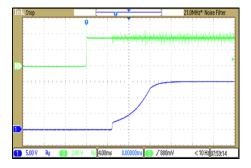

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

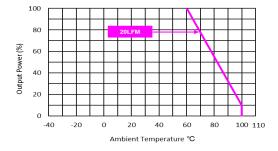

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MJWI30-24S15

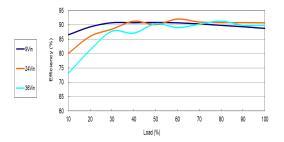

Efficiency Versus Output Current

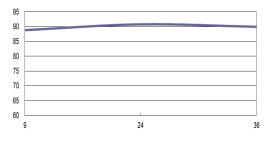

Efficiency Versus Input Voltage Full Load

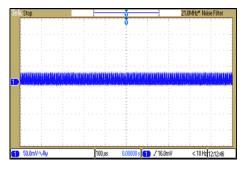

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

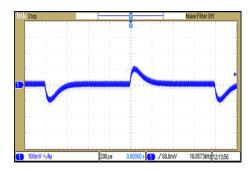

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

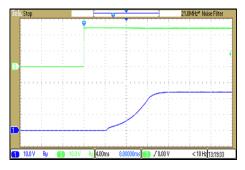
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

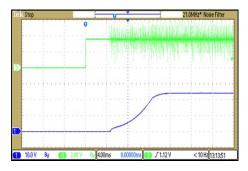

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

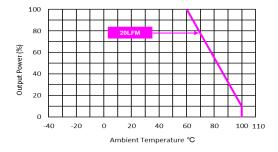

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-24S24

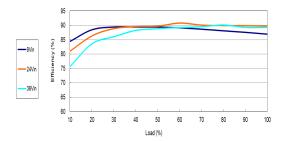

Efficiency Versus Output Current

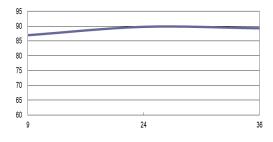

Efficiency Versus Input Voltage Full Load

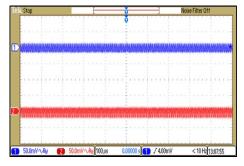

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

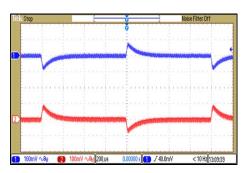

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

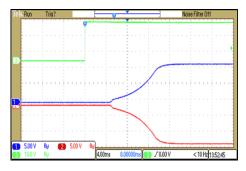
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

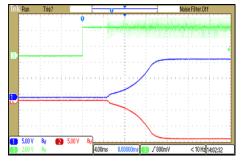

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

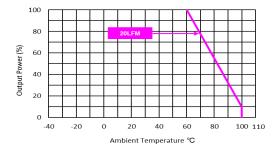

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MJWI30-24D12 $\,$

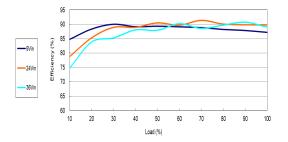

Efficiency Versus Output Current

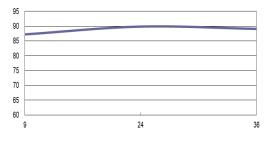

Efficiency Versus Input Voltage Full Load

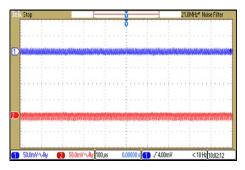

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

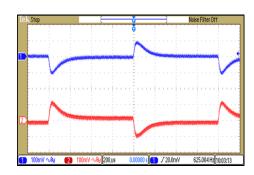

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

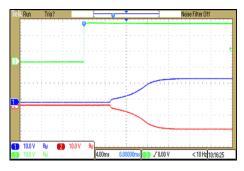
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

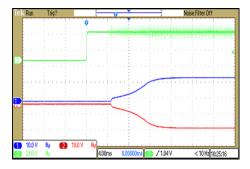

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

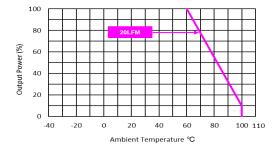

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MJWI30-24D15 $\,$


Efficiency Versus Output Current

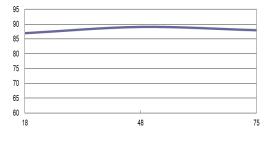

Efficiency Versus Input Voltage Full Load

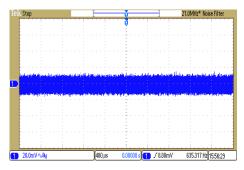

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,Full\,\,Load$

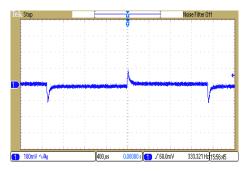

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

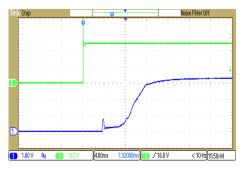
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

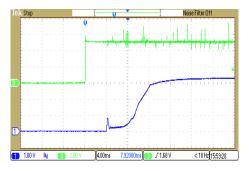

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

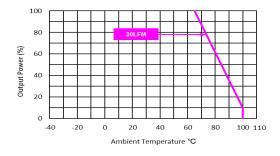

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-48S033

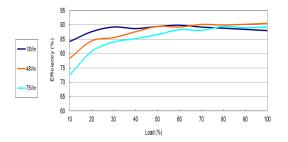

Efficiency Versus Output Current

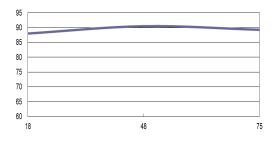

Efficiency Versus Input Voltage Full Load

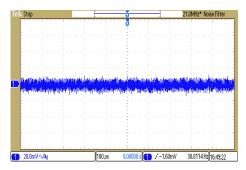

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,Full\,\,Load$

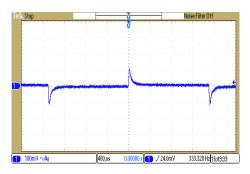

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

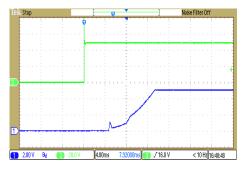
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

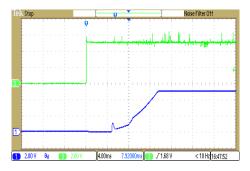

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

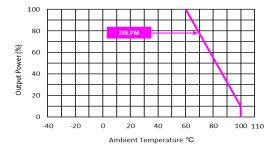

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-48S05

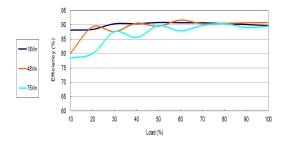

Efficiency Versus Output Current

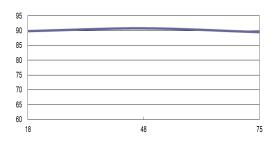

Efficiency Versus Input Voltage Full Load

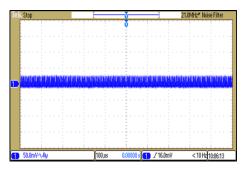

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

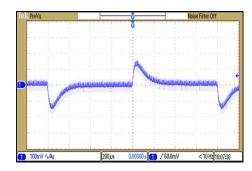

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

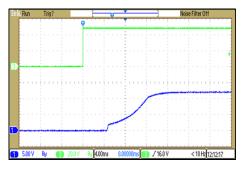
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

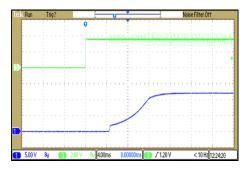

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

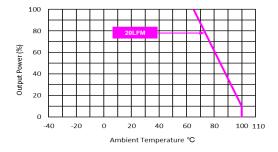

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-48S12


Efficiency Versus Output Current

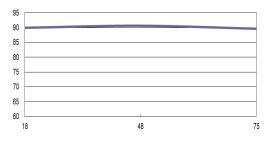

Efficiency Versus Input Voltage Full Load

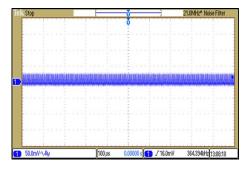

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

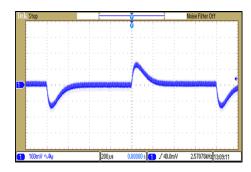

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

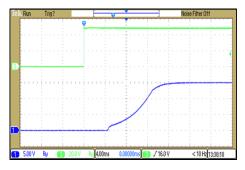
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

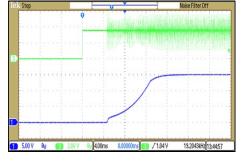
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

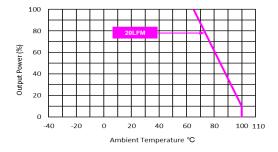

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-48S15

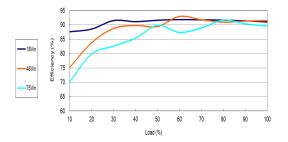

Efficiency Versus Output Current

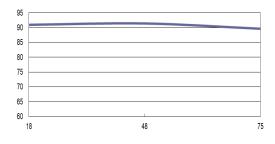

Efficiency Versus Input Voltage Full Load

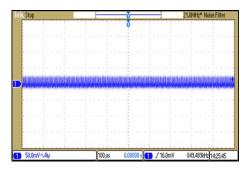

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

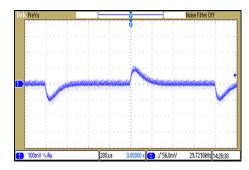

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

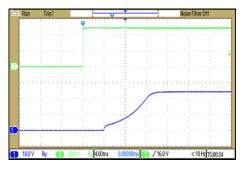
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

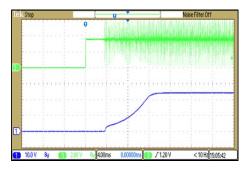

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

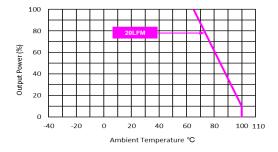

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C The figures are identical for MJWI30-48S24

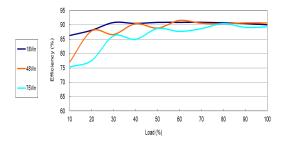

Efficiency Versus Output Current

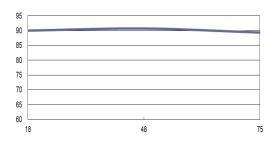

Efficiency Versus Input Voltage Full Load

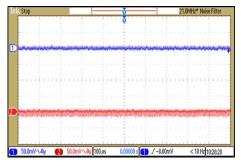

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

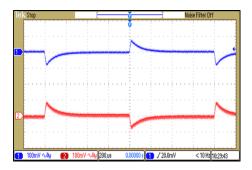

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

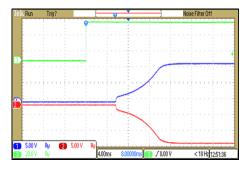
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

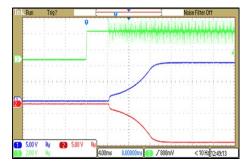

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

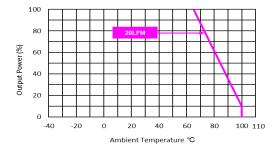

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$


All test conditions are at 25°C $\,$ The figures are identical for MJWI30-48D12 $\,$

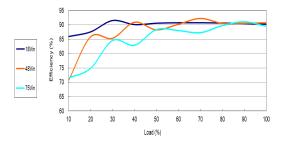

Efficiency Versus Output Current

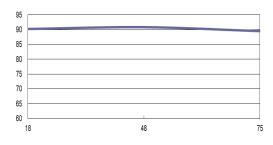

Efficiency Versus Input Voltage Full Load

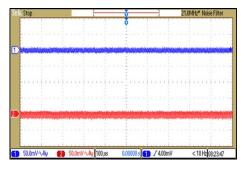

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

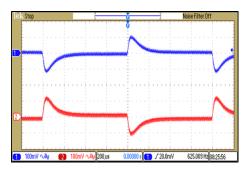

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

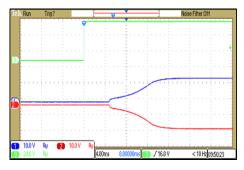
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

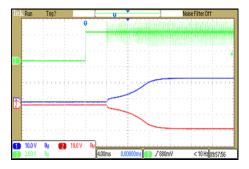

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

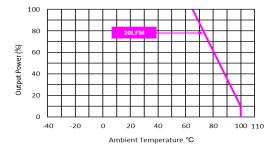

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MJWI30-48D15 $\,$


Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$

Pin Con	Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)				
1	+Vin	+Vin	Ø 1.0 [0.04]				
2	-Vin	-Vin	Ø 1.0 [0.04]				
3	+Vout	+Vout	Ø 1.0 [0.04]				
4	Trim	Common	Ø 1.0 [0.04]				
5	-Vout	-Vout	Ø 1.0 [0.04]				
6	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]				
U	Nemote On/On	Remote On/On	ا ۱.0 ا ط				

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

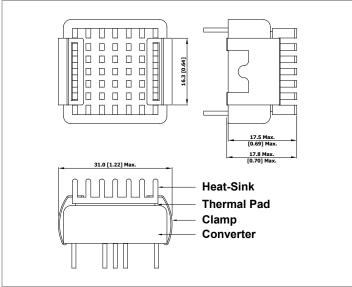
X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

 Case Size
 : 25.4x25.4x10.2mm (1.0x1.0x0.4 inches)

 Case Material
 : Metal With Non-Conductive Baseplate

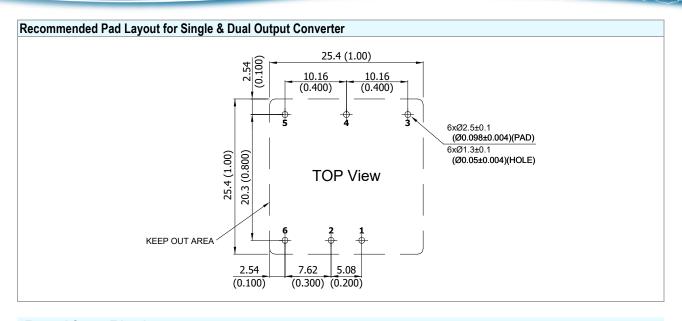

 Base Material
 : FR4 PCB (flammability to UL 94V-0 rated)

 Pin Material
 : Copper

 Weight
 : 25g

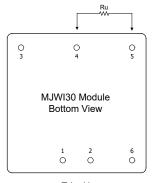
Heatsink (Option -HS)

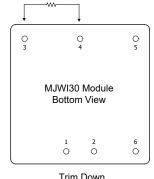
Mechanical Dimensions



Heatsink Material: Aluminum Finish: Anodic treatment (black)

Weight: 2g


- The advantages of adding a heatsink are:
- 1.To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.

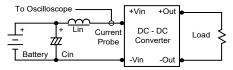


External Output Trimming

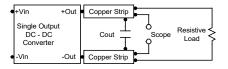
Output can be externally trimmed by using the method shown below

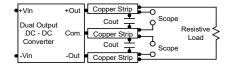
Trim Up

Trim Down


	MJWI30-	-XXS033	MJWI30	-XXS05	MJWI30	-XXS12	MJWI30	-XXS15	MJWI30	-XXS24
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	$(k\Omega)$	(kΩ)	(kΩ)	(kΩ)	$(k\Omega)$
1	72.64	60.49	139.38	107.37	413.55	351.00	530.73	422.77	598.65	487.13
2	32.49	27.14	62.91	48.26	184.55	157.50	238.61	189.89	267.77	218.01
3	19.10	16.03	37.42	28.56	108.22	93.00	141.24	112.26	157.48	128.30
4	12.41	10.47	24.68	18.71	70.05	60.75	92.56	73.44	102.33	83.45
5	8.39	7.14	17.03	12.80	47.15	41.40	63.35	50.15	69.24	56.54
6	5.72	4.91	11.94	8.86	31.88	28.50	43.87	34.63	47.18	38.60
7	3.80	3.33	8.29	6.05	20.98	19.29	29.96	23.54	31.43	25.78
8	2.37	2.14	5.56	3.94	12.80	12.37	19.53	15.22	19.61	16.17
9	1.25	1.21	3.44	2.29	6.44	7.00	11.41	8.75	10.42	8.69
10	0.36	0.47	1.74	0.98	1.35	2.70	4.92	3.58	3.07	2.71

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

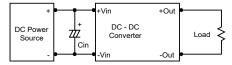
Peak-to-Peak Output Noise Measurement Test

Use a 47µF and 0.1µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

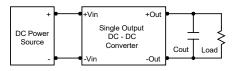
Remote On/Off

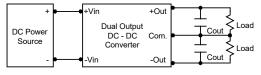
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.


The switch can be an open collector or equivalent. A logic low is 0V to 1V. A logic high is 2.5V to 50V. The maximum sink current at on/off terminal during a logic low is -500µA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 50V) is 500µA.

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $6.8\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

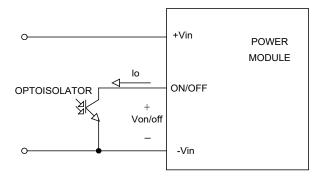
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7μ F capacitors at the output.

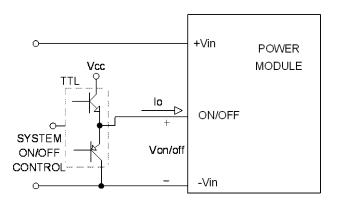


Maximum Capacitive Load

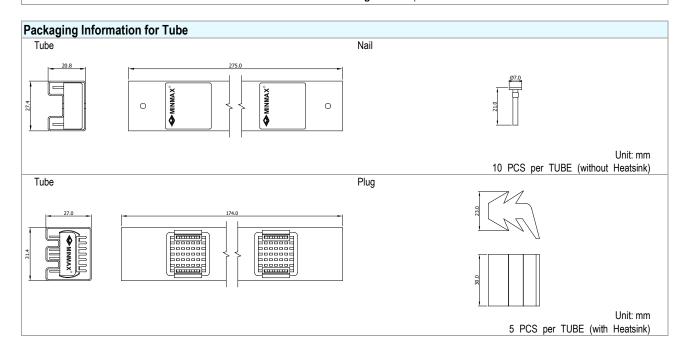
The MJWl30 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

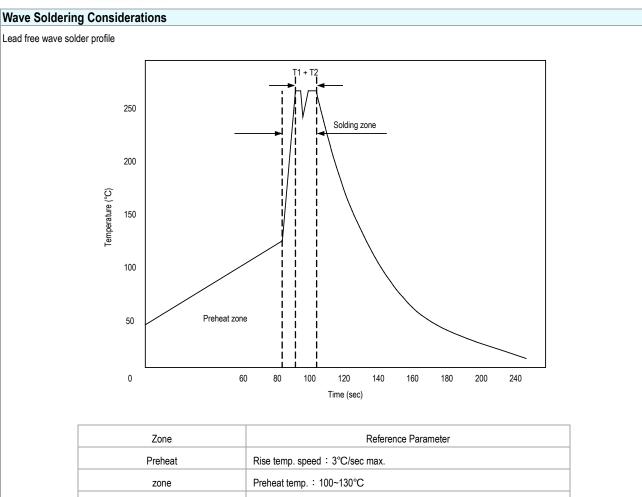

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Remote On/Off Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF


Level Control Using TTL Output

Date:2024-05-10 Rev:12

MJWI30 Series – EC Notes 22

Peak temp. : 250~260°C

Peak time(T1+T2): 4~6 sec

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Actual

heating

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure WI 30 24 S 033 M Ultra-wide 4:1 **Output Quantity** Package Type Output Power Input Voltage Range Output Voltage 1" X 1" Input Voltage Range 30 Watt 24: VDC S: Single 033: VDC 9 36 3.3 48: 18 75 VDC D: Dual 05: 5 VDC VDC 12: 12 15: 15 VDC 24: 24 VDC ±12 VDC 12: VDC 15: ±15

MTBF and Reliability

The MTBF of MJWI30 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MJWI30-24S033	1,578,412	
MJWI30-24S05	1,310,710	
MJWI30-24S12	1,420,534	
MJWI30-24S15	1,417,972	
MJWI30-24S24	1,416,034	
MJWI30-24D12	1,372,587	
MJWI30-24D15	1,526,975	Haura
MJWI30-48S033	1,580,245	Hours
MJWI30-48S05	1,466,671	
MJWI30-48S12	1,574,031	
MJWI30-48S15	1,569,924	
MJWI30-48S24	1,740,360	
MJWI30-48D12	1,710,085	
MJWI30-48D15	1,705,700	