

MJW15 Series EC Note

DC-DC CONVERTER 15W, Regulated Output, 1"x1" Package

Features

- Industrial Standard 1" x 1" Package
- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1500VDC
- Operating Ambient Temp. Range -40°C to +90°C
- Low No Load Power Consumption
- No Min. Load Requirement
- Under-voltage, Overload/Voltage and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- Conducted EMI EN 55032 Class A Approved
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MJW15 series is a range of cost-optimized 15W isolated DC-DC converter within an encapsulated 1"x1" industrial standard package. There are 21 models available for 12, 24, 48VDC with wide 2:1 input voltage range and fixed output voltage regulation. The MJW15 series come in a shielded metal package and conducted EMI EN 55032 Class A approved without external components. By state-of-the-art circuit topology and 91% high efficiency could be achieved allowing an operating temperature of -40°C to +90°C as well as low standby power consumption. Further features include remote ON/OFF, trimmable output voltage, under-voltage protection, overload protection, over voltage protection, short circuit protection and no min. load requirement as well. These DC-DC converters offer a better solution for critical space applications to reduce PCB layout demand area like battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and others.

Table of contents

Model Selection Guide	P2	External Output Trimming	. P27
Input Specifications	P2	Test Setup	. P28
Remote On/Off Control	P2	Technical Notes	. P28
Output Specifications	P3	Remote On/Off Implementation	. P29
General Specifications	P3	Packaging Information for Tube	. P29
EMC Specifications	P3	Wave Soldering Considerations	. P30
Environmental Specifications	P4	Hand Welding Parameter	. P30
Characteristic Curves	P5	Part Number Structure	. P31
Package SpecificationsP	' 26	MTBF and Reliability	. P31
Recommended Pad Layout for Single & Dual Output Converter P	27 [°]		

Date:2024-05-09 Rev:3

Model Selection	Guide								
Model Number	Input Voltage	Output Voltage	Output Current	Inp Cur		Reflected Ripple	Over Voltage	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA (typ.)	VDC	μF	%
MJW15-12S033		3.3	3400	1087	10	_	3.9	5800	86
MJW15-12S05		5	3000	1404	10	_	6.2	5100	89
MJW15-12S12	12	12	1250	1404	10		15	870	89
MJW15-12S15	12 (9 ~ 18)	15	1000	1404	10	80	18	560	89
MJW15-12S24	(9~10)	24	625	1389	10		30	220	90
MJW15-12D12		±12	±625	1404	15		±15	440#	89
MJW15-12D15		±15	±500	1389	15		±18	280#	90
MJW15-24S033		3.3	3400	544	8		3.9	5800	86
MJW15-24S05		5	3000	710	8		6.2	5100	88
MJW15-24S12	24	12	1250	694	8		15	870	90
MJW15-24S15	24 (18 ~ 36)	15	1000	694	8	50	18	560	90
MJW15-24S24	(10~30)	24	625	687	8		30	220	91
MJW15-24D12		±12	±625	694	10		±15	440#	90
MJW15-24D15		±15	±500	694	10		±18	280#	90
MJW15-48S033		3.3	3400	269	8		3.9	5800	87
MJW15-48S05		5	3000	355	8		6.2	5100	88
MJW15-48S12	40	12	1250	347	8		15	870	90
MJW15-48S15	48 (36 ~ 75)	15	1000	347	8	30	18	560	90
MJW15-48S24	(30 ~ 75)	24	625	343	8		30	220	91
MJW15-48D12		±12	±625	351	10		±15	440#	89
MJW15-48D15		±15	±500	347	10		±18	280#	90

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (100 ms max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		7.5		
Under Voltage Shutdown	24V Input Models		16		
	48V Input Models		34		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Internal	LC Type	

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 1	2V or Open Circuit			
Converter Off	0V ~ 1.2	2V or Short Circuit			
Control Input Current (on)	Vctrl = 5.0V			0.5	mA
Control Input Current (off)	Vctrl = 0V			-0.5	mA
Control Common	Reference	ed to Negative Input			
Standby Input Current	Nominal Vin		3		mA

Date:2024-05-09 Rev:3

Output Specifications							
Parameter	Cond	litions / Model		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance	Dual Outp	ut, Balanced Loa	ds			±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load	Single Output				±0.2	%
Line Regulation		Dual Output				±0.5	%
		Cinala Output	3.3V & 5V			±0.5	%
Load Regulation	lo=0% to 100%	Single Output	12V,15V & 24V			±0.2	%
		Dual Output				±1.0	%
Load Cross Regulation (Dual Output)	Asymmetrical Lo	Asymmetrical Load 25%/100% Full Load				±5.0	%
Minimum Load		Ν	o minimum Load Req	uirement			
		3.3V & 5V Mode	els			75	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	12V, 15V & Dua	I Output Models			100	mV _{P-P}
		24V Models				150	mV _{P-P}
Transient Recovery Time	050/ 1 -	ad Olan Ohanaa			300		µsec
Transient Response Deviation	25% L0	ad Step Change			±3	±5	%
Temperature Coefficient						±0.02	%/°C
Trim Up / Down Range	% of nom	inal output voltag	e			±10	%
Over Load Protection	Hiccup			150		%	
Short Circuit Protection		Continuous, Au	itomatic Recovery (Hi	ccup Mode 0.7	Hz typ.)		

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
VO lastation Valtage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
Isolation Voltage Input/Output to case		1000			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			1500	pF
Switching Frequency			330		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,489,680			Hours
Cofety Approvale	UL/cUL 60950-1 recognition(UL certificate	e), IEC/EN 60950	-1(CB-report	:)	
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate	e), IEC/EN 62368	-1(CB-report	:)	

EMC Specifications

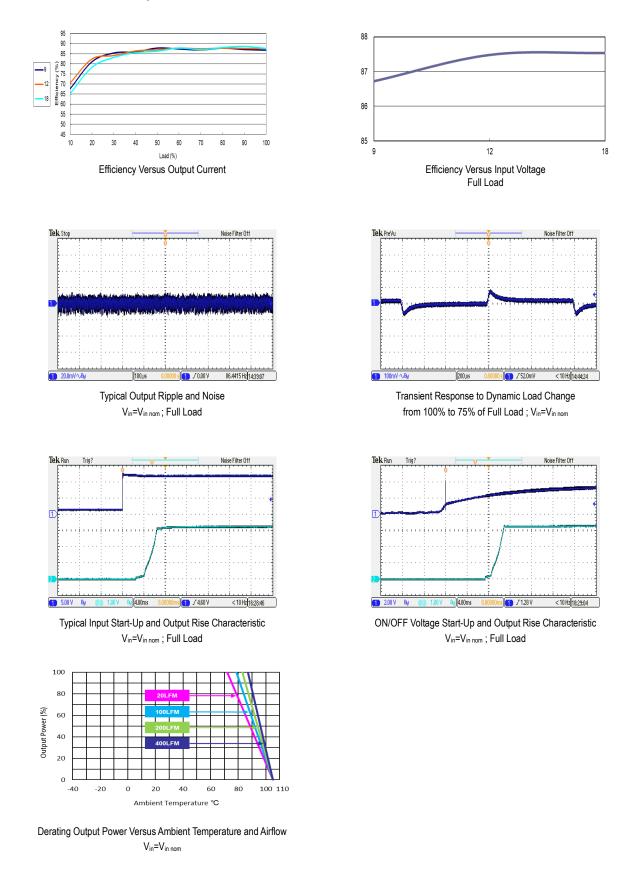
Parameter		Standards & Level		Performance
EMI.	Conduction		Without external components	Class A
EMI(6)	Radiation	EN 55032	With external components	Class A
	EN 55035			
	ESD	EN 61000-4-2 Air±	8kV, Contact ±6kV	A
	Radiated immunity	EN 61000)-4-3 10V/m	A
EMS ₍₆₎	Fast transient	EN 6100	0-4-4 ±2kV	A
	Surge	EN 6100	0-4-5 ±1kV	A
	Conducted immunity	EN 61000-	-4-6 10V/rms	A
	PFMF	EN 61000	-4-8 100A/m	A

Environmental Specifications

Parameter	Conditions / Model	Min.	Ma	х.	Unit
Parameter	Conditions / Model	IVIII.	without Heatsink	with Heatsink	Unit
	MJW15-24S24, MJW15-48S24		+78	+82	
	MJW15-12S24, MJW15-12D15, MJW15-24S12				
	MJW15-24S15 MJW15-24D12, MJW15-24D15		+75	+80	
Operating Ambient Temperature Range	MJW15-48S12, MJW15-48S15, MJW15-48D15				
Nominal Vin, Load 100% Inom.	MJW15-48S033	-40	+74	+79	°C
(for Power Derating see relative Derating Curves)	MJW15-12S033, MJW15-24S033		+72	+77	
	MJW15-12S05, MJW15-12S12, MJW15-12S15		+71	+77	
	MJW15-12D12, MJW15-48D12		+/ 1	+//	
	MJW15-24S05, MJW15-48S05		+68	+74	
	20LFM Convection without Heatsink	18.2			°C/W
	20LFM Convection with Heatsink	15.3			°C/W
	100LFM Convection without Heatsink	13.9			°C/W
Thermal Impedance	100LFM Convection with Heatsink	8.8			°C/W
mermai impedance	200LFM Convection without Heatsink	12.1			°C/W
	200LFM Convection with Heatsink	6.8			°C/W
	400LFM Convection without Heatsink	9.1			°C/W
	400LFM Convection with Heatsink	4.6			°C/W
Case Temperature			+10)5	°C
Storage Temperature Range		-50	+12	25	°C
Humidity (non condensing)			95	5	% rel. H
RFI	Six-Sideo	d Shielded, N	Metal Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C

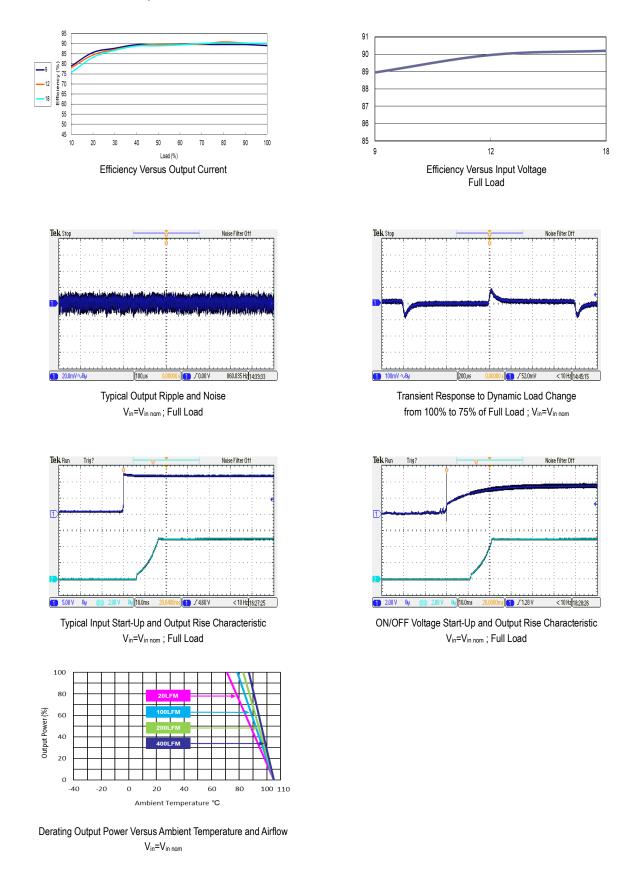
Notes

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.


- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measured with a 1µF MLCC.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

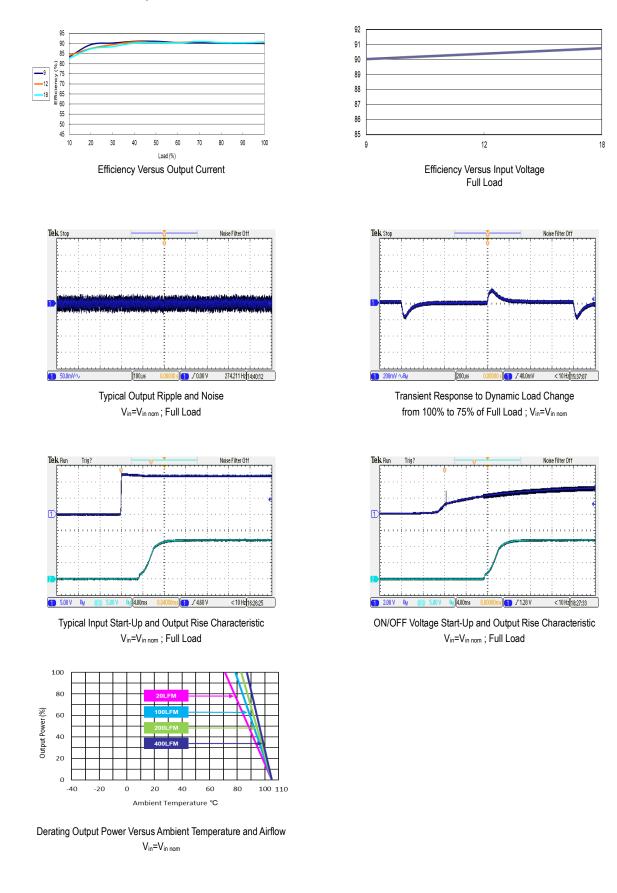
Date:2024-05-09 Rev:3

Characteristic Curves


All test conditions are at 25°C The figures are identical for MJW15-12S033

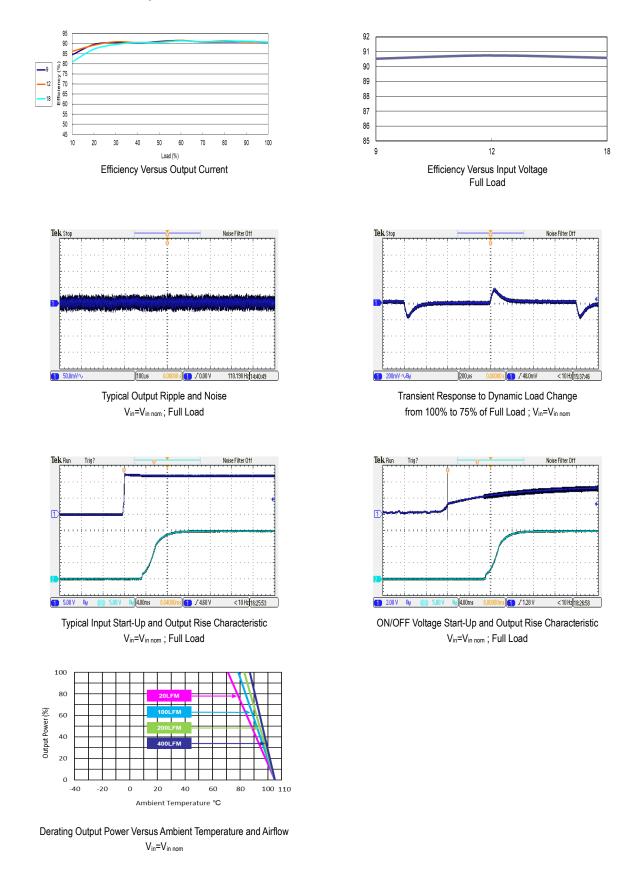
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MJW15-12S05 $\,$



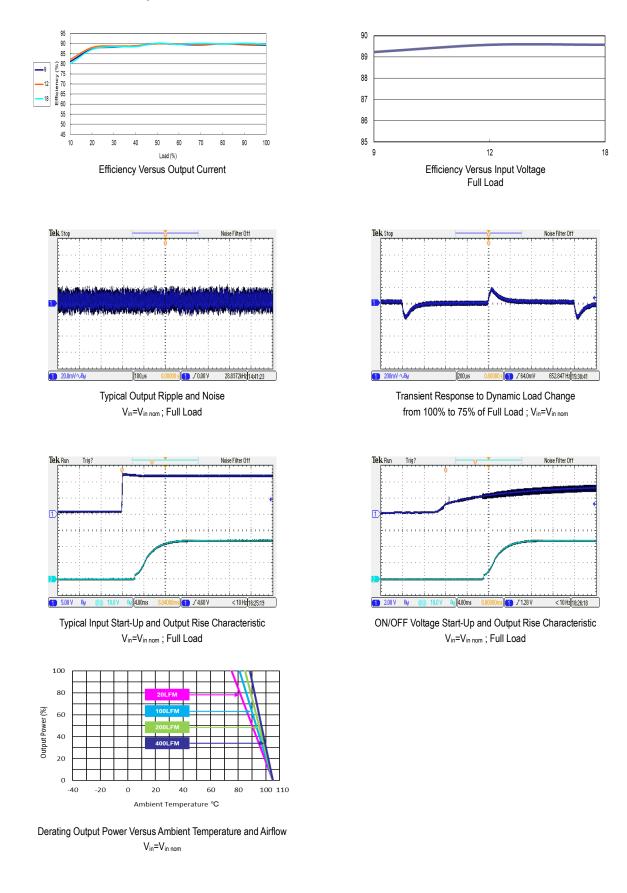
Date:2024-05-09 Rev:3

Characteristic Curves


All test conditions are at 25°C $\,$ The figures are identical for MJW15-12S12 $\,$

Characteristic Curves

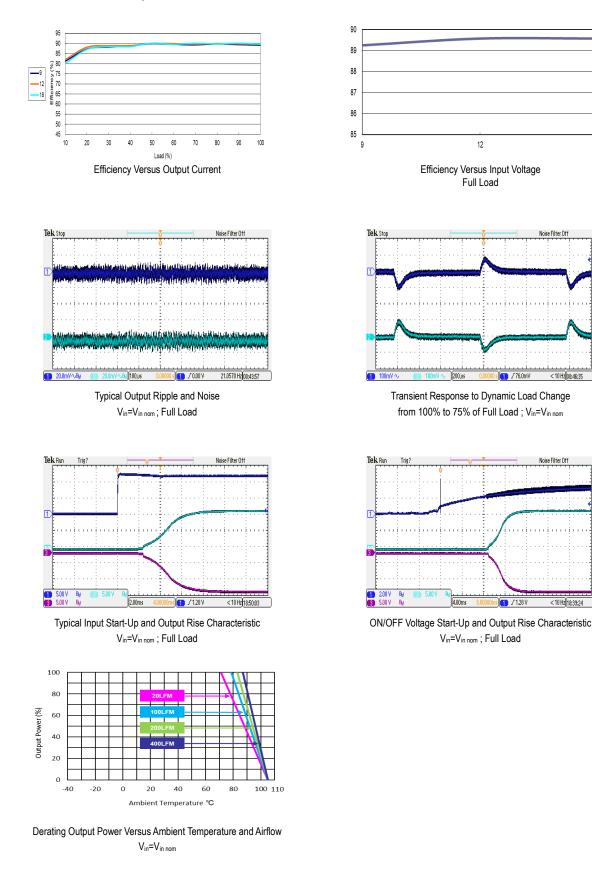
All test conditions are at 25°C $\,$ The figures are identical for MJW15-12S15 $\,$



Date:2024-05-09 Rev:3

Characteristic Curves

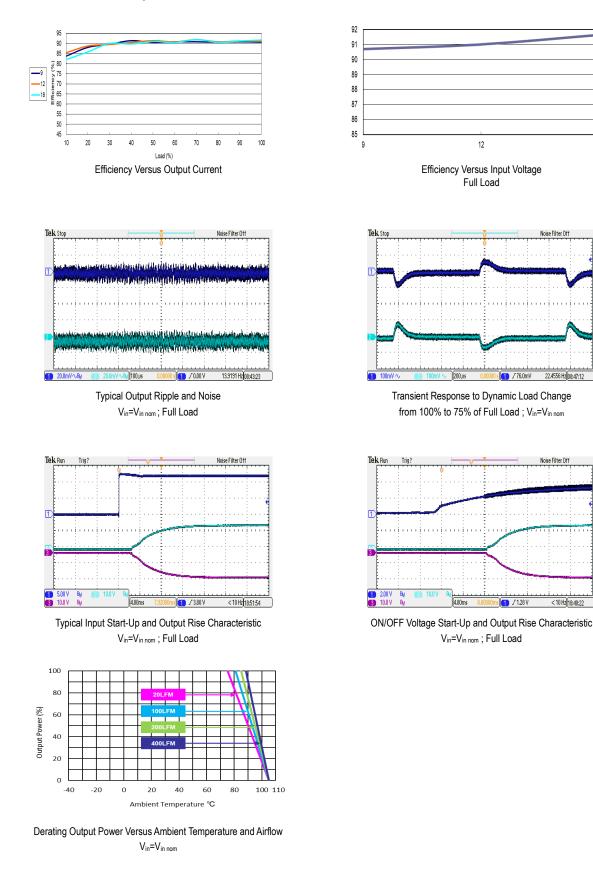
All test conditions are at 25°C The figures are identical for MJW15-12S24



18

Characteristic Curves

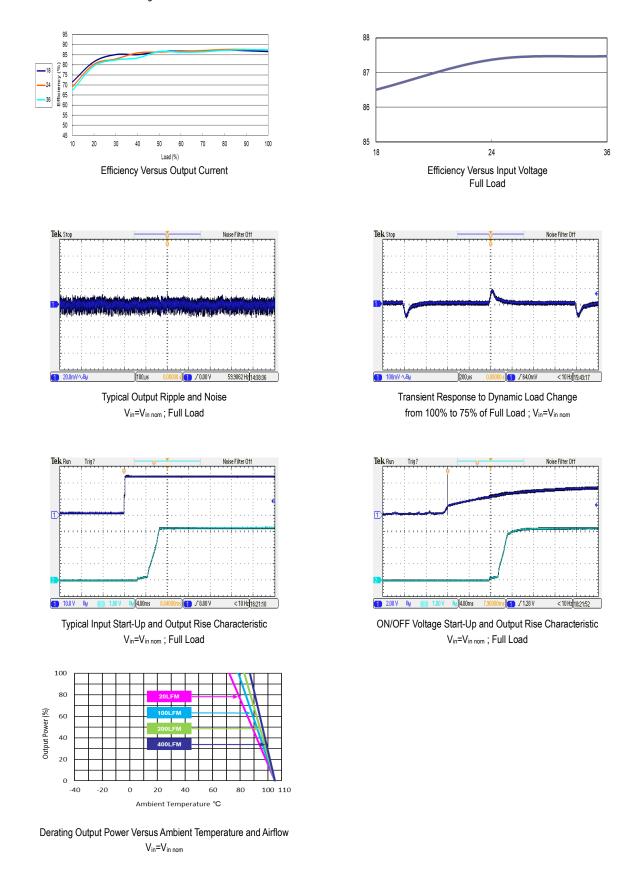
All test conditions are at 25°C The figures are identical for MJW15-12D12



18

Characteristic Curves

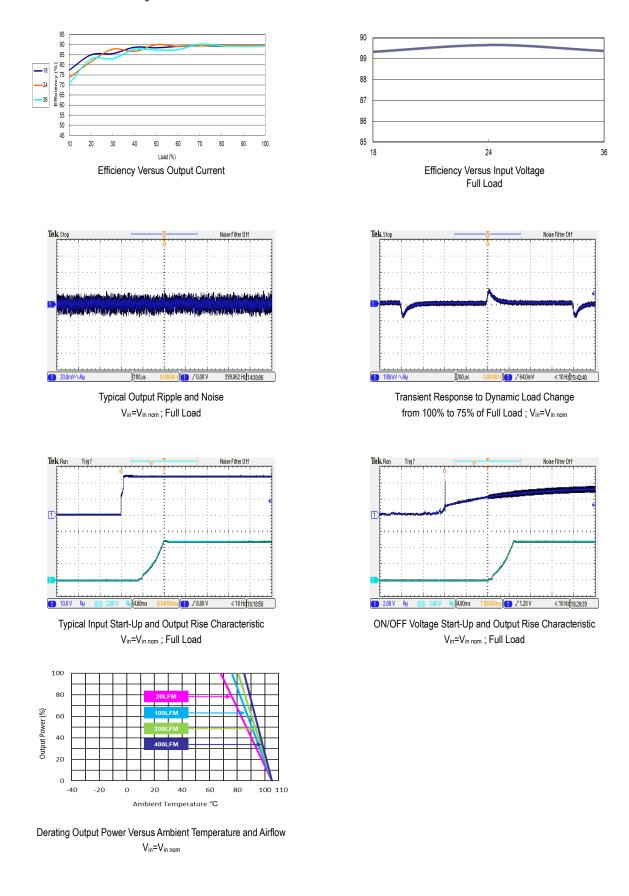
All test conditions are at 25°C The figures are identical for MJW15-12D15



Date:2024-05-09 Rev:3

Characteristic Curves

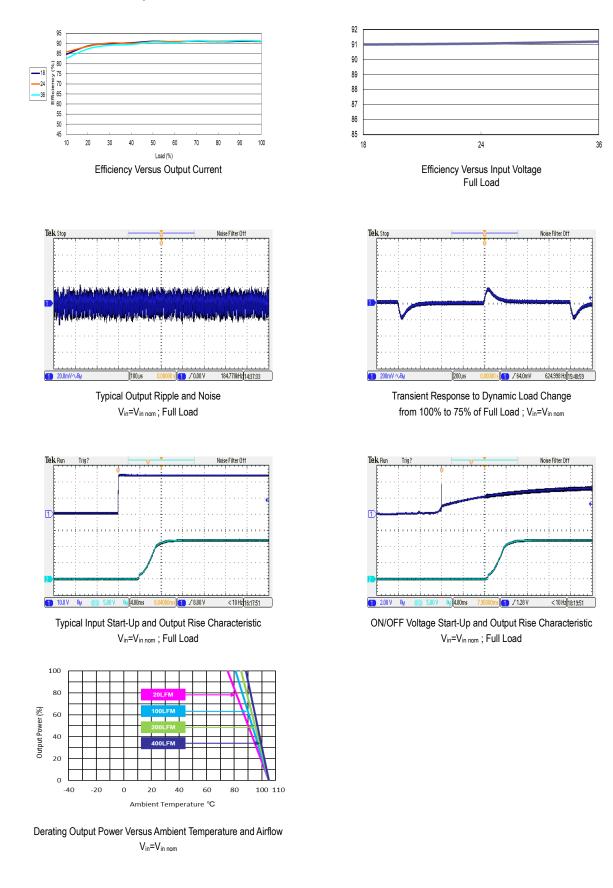
All test conditions are at 25°C The figures are identical for MJW15-24S033



Date:2024-05-09 Rev:3

Characteristic Curves

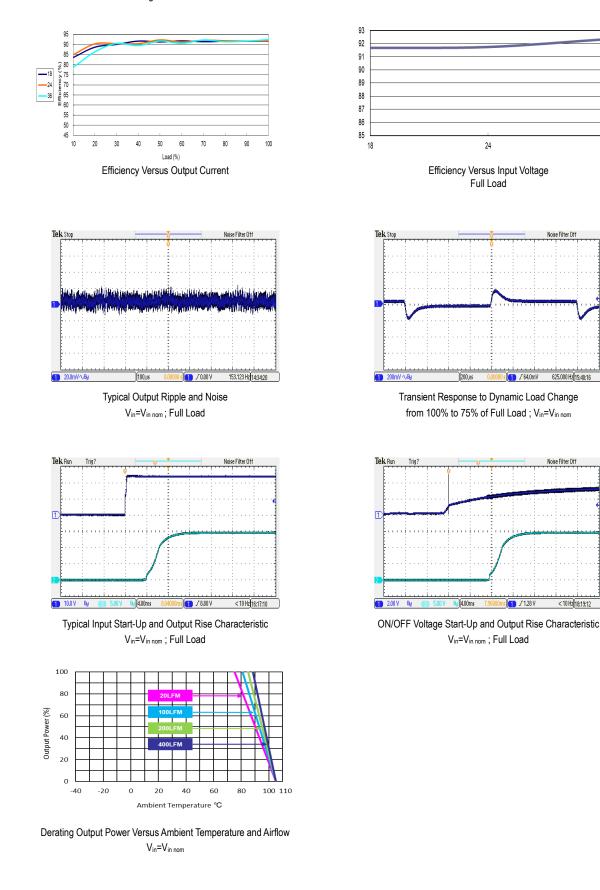
All test conditions are at 25°C The figures are identical for MJW15-24S05



Date:2024-05-09 Rev:3

Characteristic Curves

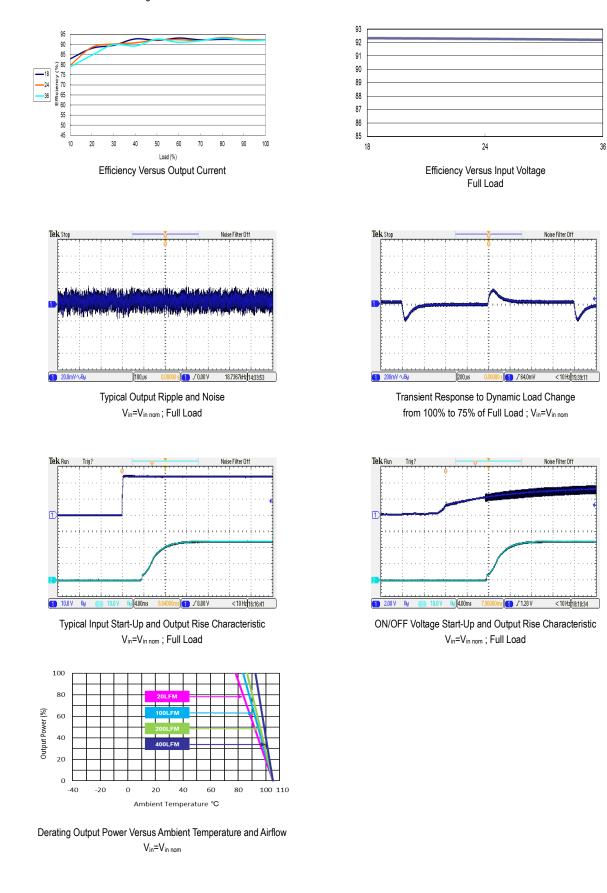
All test conditions are at 25°C $\,$ The figures are identical for MJW15-24S12 $\,$



36

Characteristic Curves

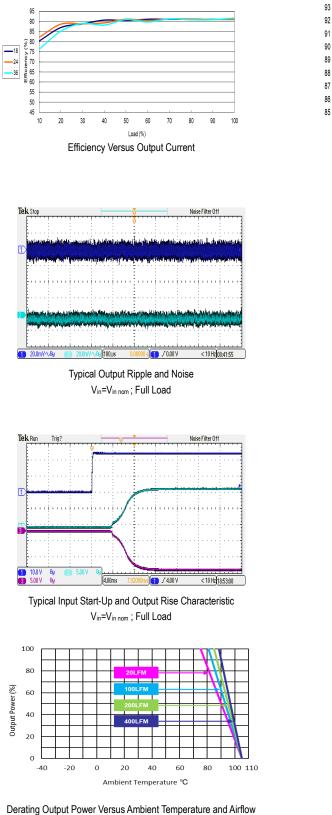
All test conditions are at 25°C $\,$ The figures are identical for MJW15-24S15 $\,$

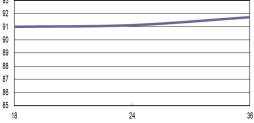


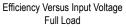
Date:2024-05-09 Rev:3

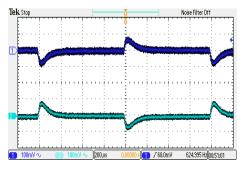
Characteristic Curves

All test conditions are at 25°C The figures are identical for MJW15-24S24

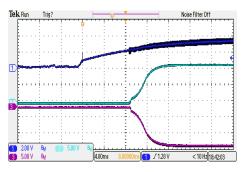



Date:2024-05-09 Rev:3



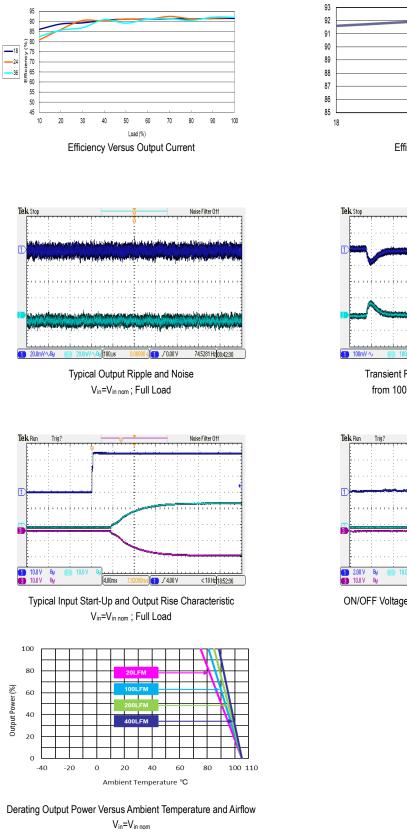

Characteristic Curves

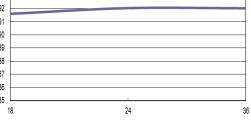
All test conditions are at 25°C The figures are identical for MJW15-24D12

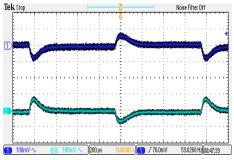


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

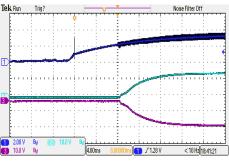
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load


Date:2024-05-09 Rev:3


Vin=Vin nom

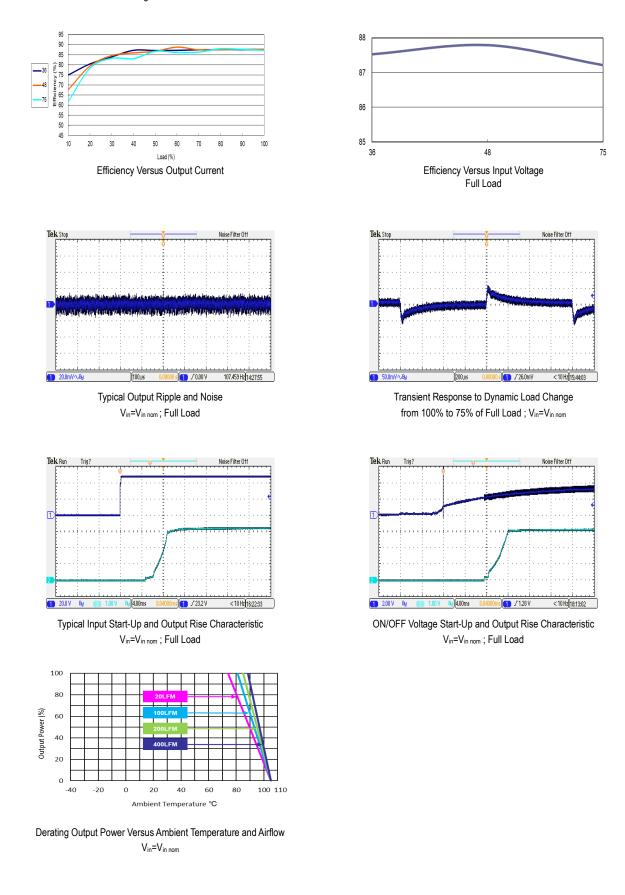

Characteristic Curves

All test conditions are at 25°C The figures are identical for MJW15-24D15



Efficiency Versus Input Voltage Full Load

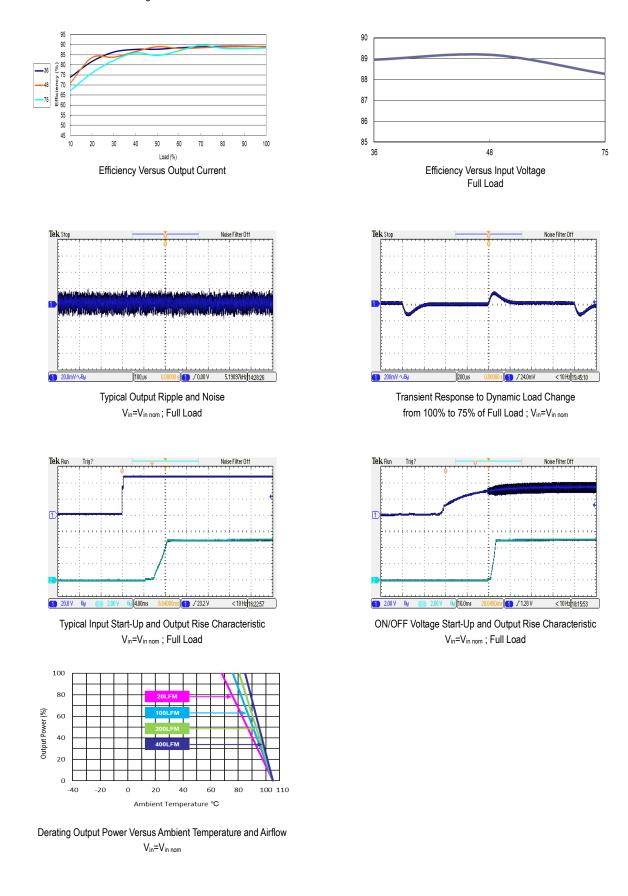
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom


ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-05-09 Rev:3

Characteristic Curves

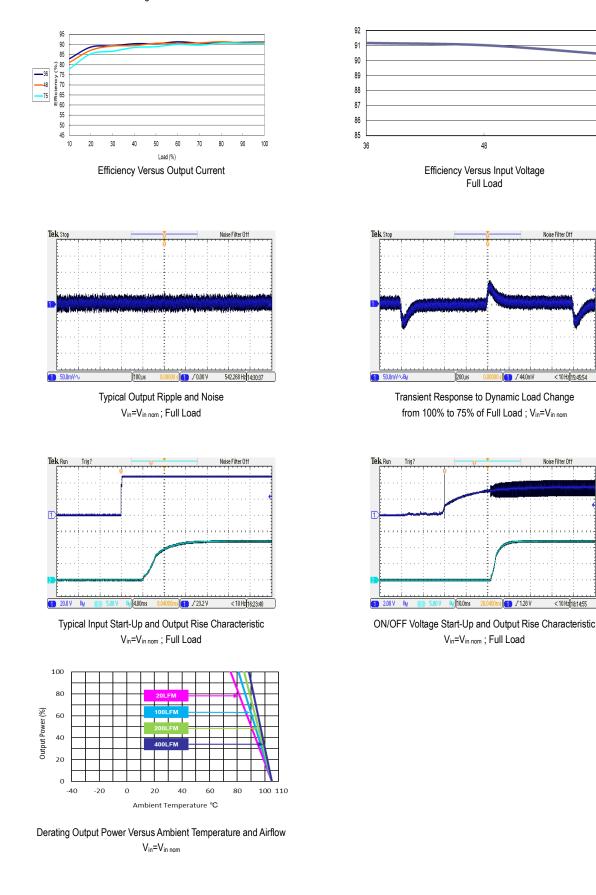
All test conditions are at 25°C The figures are identical for MJW15-48S033



Date:2024-05-09 Rev:3

Characteristic Curves

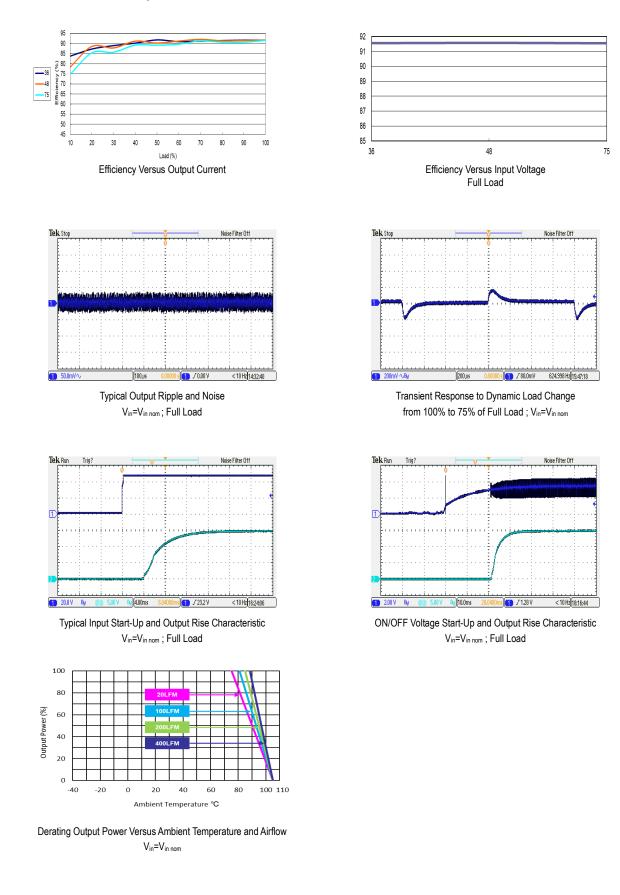
All test conditions are at 25°C The figures are identical for MJW15-48S05


Date:2024-05-09 Rev:3

75

Characteristic Curves

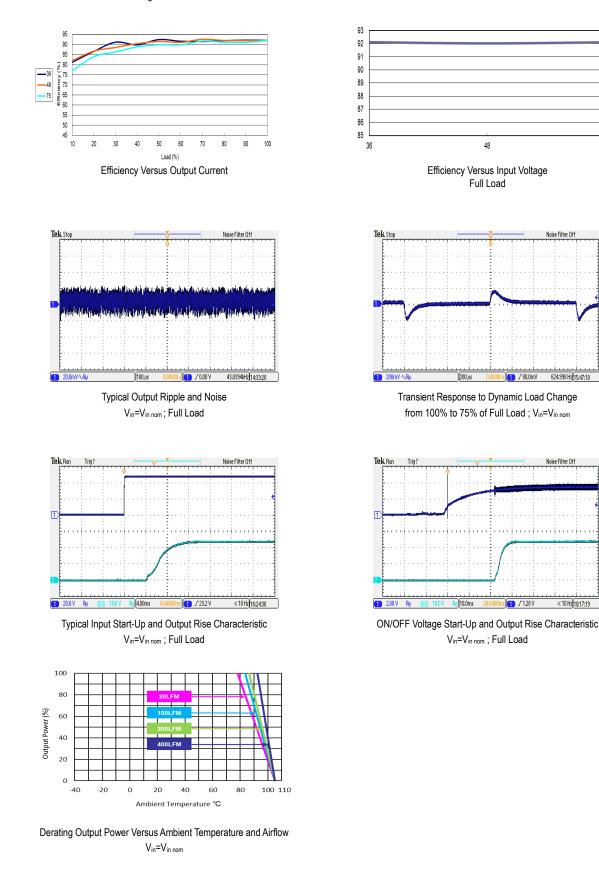
All test conditions are at 25°C $\,$ The figures are identical for MJW15-48S12 $\,$



Date:2024-05-09 Rev:3

Characteristic Curves

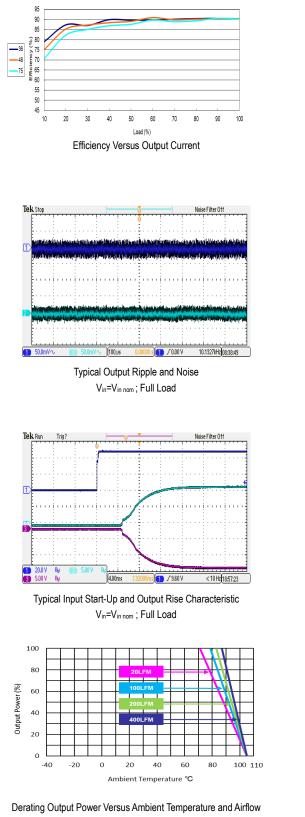
All test conditions are at 25°C The figures are identical for MJW15-48S15


Date:2024-05-09 Rev:3

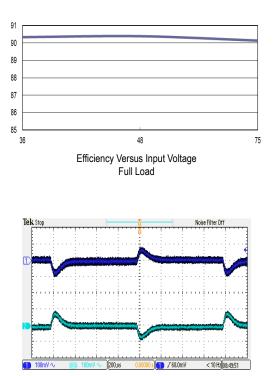
75

Characteristic Curves

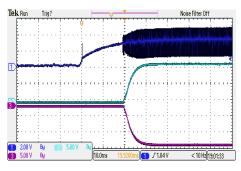
All test conditions are at 25°C The figures are identical for MJW15-48S24



Date:2024-05-09 Rev:3

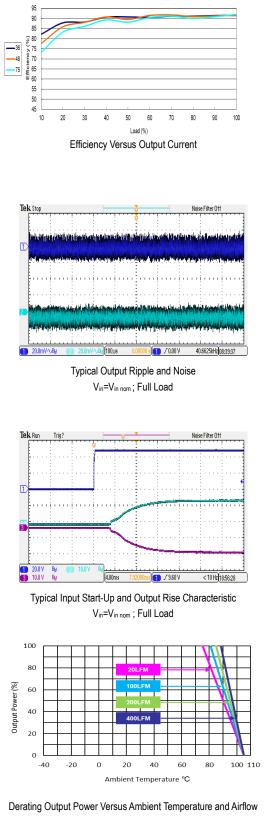


Characteristic Curves

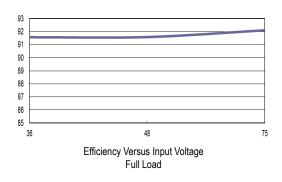

All test conditions are at 25°C The figures are identical for MJW15-48D12

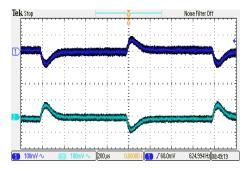
 $V_{in} = V_{in \ nom}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

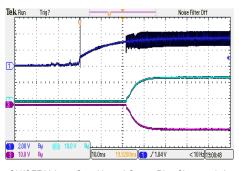

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

Date:2024-05-09 Rev:3




Characteristic Curves

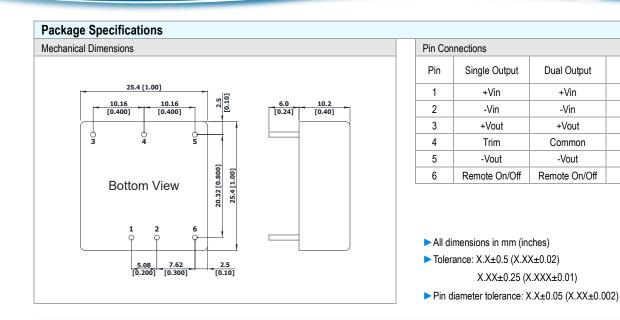
All test conditions are at 25°C The figures are identical for MJW15-48D15



 $V_{in} = V_{in \ nom}$

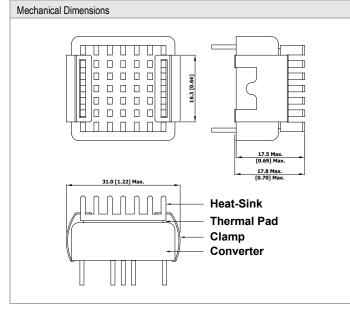
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load


Date:2024-05-09 Rev:3

Diameter

mm (inches)

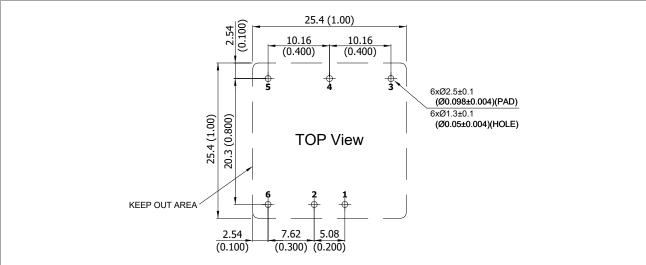

Ø 1.0 [0.04]

Physical Characteristics

Case Size	:	25.4x25.4x10.2mm (1.0x1.0x0.4 inches)
Case Material	:	Metal With Non-Conductive Baseplate
Base Material	:	FR4 PCB (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Weight	:	15g

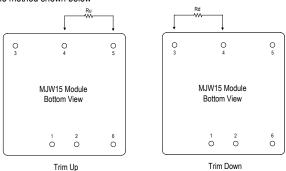
Heatsink (Option –HS)

Heatsink Material: Aluminum Finish: Anodic treatment (black) Weight: 2g


The advantages of adding a heatsink are:

- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.

Date:2024-05-09 Rev:3

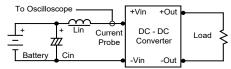


Recommended Pad Layout for Single & Dual Output Converter

External Output Trimming

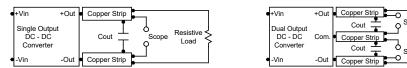
Output can be externally trimmed by using the method shown below

	MJW15-	XXS033	MJW15	-XXS05	MJW15	-XXS12	MJW15	-XXS15	MJW15-	XXS24
Trim Range	Trim down	Trim up								
(%)	(kΩ)	(kΩ)								
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72


Resistive

Load

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a 1µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500µA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 6) at logic high (3.5V to 12V) is 10mA.

Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10µF for the 24V and 48V devices.

Output Ripple Reduction

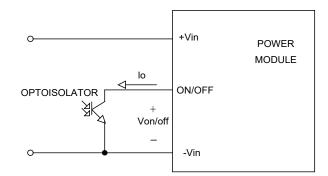
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

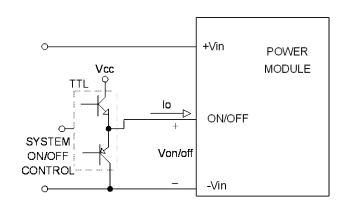


Maximum Capacitive Load

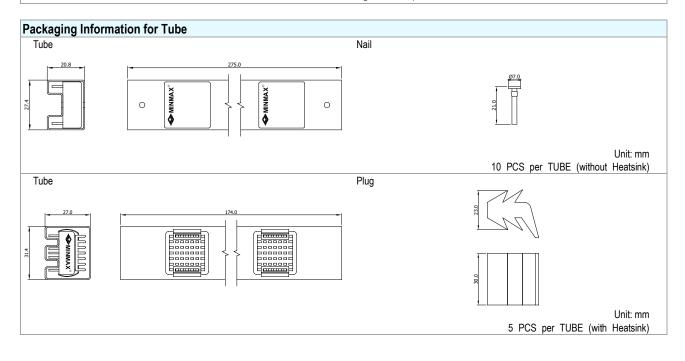
The MJW15 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

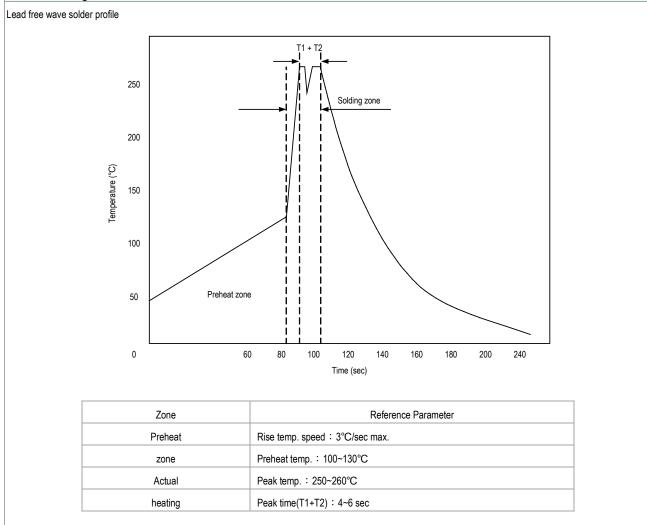

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Remote On/Off Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF

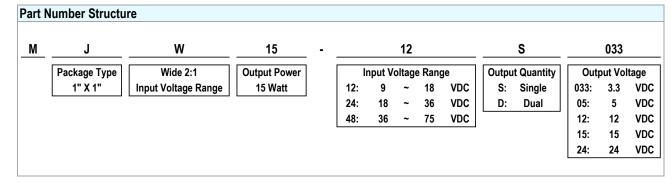


Date:2024-05-09 Rev:3

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag


Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2024-05-09 Rev:3

MTBF and Reliability

The MTBF of MJW15 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MJW15-12S033	1,504,901	
MJW15-12S05	1,564,437	
MJW15-12S12	2,191,727	
MJW15-12S15	2,012,405	
MJW15-12S24	2,318,844	
MJW15-12D12	1,883,245	
MJW15-12D15	1,878,991	
MJW15-24S033	1,542,221	
MJW15-24S05	1,489,680	
MJW15-24S12	2,375,076	
MJW15-24S15	2,252,961	Hours
MJW15-24S24	2,448,672	
MJW15-24D12	1,996,727	
MJW15-24D15	1,901,442	
MJW15-48S033	1,654,078	
MJW15-48S05	1,499,286	
MJW15-48S12	2,396,657	_
MJW15-48S15	2,330,863	
MJW15-48S24	2,548,599	
MJW15-48D12	1,883,151	
MJW15-48D15	1,949,380	

Date:2024-05-09 Rev:3