

MJW10 Series EC Note

DC-DC CONVERTER 10W, Regulated Output, 1"x1" Package

Features

- ► Industrial Standard 1" x 1" Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► Low No Load Power Consumption
- ► No Min. Load Requirement
- ► Under-voltage, Overload and Short Circuit Protection
- ➤ Remote On/Off Control (option)
- ► Shielded Metal Case with Insulated Baseplate
- ► Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- Workstations
- Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MJW10 series is a range of cost-optimized 10W isolated DC-DC converter within an encapsulated 1"x1" industrial standard package. There are 24 models available for 12, 24, 48VDC with wide 2:1 input voltage range and tight output voltage regulation. The MJW10 series come in a shielded metal package and conducted EMI EN 55032 Class A approved without external components. By state-of-the-art circuit topology and 89% high efficiency could be achieved allowing an operating temperature of -40°C to +80°C as well as low standby power consumption. Further features include remote ON/OFF, under-voltage protection, overload protection, short circuit protection and no min. load requirement as well. These DC-DC converters offer a better solution for critical space applications to reduce PCB layout demand area like battery-powered equipment, instrumentation, distributed power architectures

in communication, industrial electronics, energy facilities and others.

Table of contents

Model Selection GuideP2	Recommended Pad Layout for Single & Dual Output Converter F	230
Input SpecificationsP2	Test SetupF	231
Remote On/Off ControlP2		
Output SpecificationsP3	Remote On/Off ImplementationF	232
General SpecificationsP3	Packaging Information for TubeF	232
EMC SpecificationsP3	Wave Soldering ConsiderationsF	-33
Environmental SpecificationsP4	Hand Welding Parameter F	-33
Characteristic CurvesP5	Part Number Structure F	233
Package SpecificationsP29	MTBF and ReliabilityF	234

Date:2024-05-08 Rev:5

www.minmaxpower.com

Model	Input	Output	Output	Inp	out	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MJW10-12S033		3.3	2500	838		4700	82
MJW10-12S05		5	2000	980		2200	85
MJW10-12S051		5.1	2000	1000	45	2200	85
MJW10-12S12	12	12	830	954		330	87
MJW10-12S15	(9 ~ 18)	15	670	952	15	220	88
MJW10-12D05		±5	±1000	992		1000#	84
MJW10-12D12		±12	±416	956		150#	87
MJW10-12D15		±15	±333	957		100#	87
MJW10-24S033		3.3	2500	414		4700	83
MJW10-24S05		5	2000	490		2200	85
MJW10-24S051		5.1	2000	500		2200	85
MJW10-24S12	24	12	830	472	10	330	88
MJW10-24S15	(18 ~ 36)	15	670	471	12	220	89
MJW10-24D05		±5	±1000	490		1000#	85
MJW10-24D12		±12	±416	473		150#	88
MJW10-24D15		±15	±333	468		100#	89
MJW10-48S033		3.3	2500	207		4700	83
MJW10-48S05		5	2000	242		2200	86
MJW10-48S051		5.1	2000	250		2200	85
MJW10-48S12	48	12	830	233	10	330	89
MJW10-48S15	(36 ~ 75)	15	670	235		220	89
MJW10-48D05		±5	±1000	242		1000#	86
MJW10-48D12		±12	±416	239		150#	87
MJW10-48D15		±15	±333	237		100#	88

For each output

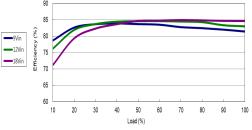
Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models			8.5	
Under Voltage Shutdown	24V Input Models			17	
	48V Input Models	3		34	
Input Filter	All Models	Internal Pi Type			

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	3.5V ~ 12V or Open Circuit				
Converter Off	0~1.2V or Short Circuit (Pin 2 and Pin 6)				
Control Input Current (on)	Vctrl = 5V			0.5	mA
Control Input Current (off)	Vctrl = 0V			-0.5	mA
Control Common	Referenced to Negative Input				
Standby Input Current	Nominal Vin		5		mA

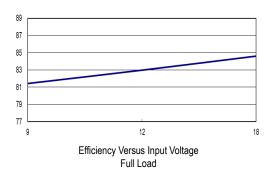
Output Specifications						
Parameter	Condition	ons / Model	Min.	Typ.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual Output,	Balanced Loads			±2.0	%
Line Regulation	Vin=Min. to N	Max. @Full Load			±1.0	%
	1 00/ 1 4000/	Single Output			±0.5	%
Load Regulation lo=0% to	lo=0% to 100%	Dual Output			±1.0	%
Cross Regulation (Dual)	Asymmetrical Id	Asymmetrical load 25% / 100% FL			±5.0	%
Minimum Load		No minin	num Load Require	ement		
Disale 0 Notes	0.00 MH - D	3.3 & 5V Output		80		mV _{p-p}
Ripple & Noise	0-20 MHz Bandwidth	Other Output		100		mV _{p-p}
Transient Recovery Time	050/ 1	01 01		300		μsec
Transient Response Deviation	25% Load	25% Load Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection	Н	Hiccup		150		%
Short Circuit Protection		Continuous, Automatic	Recovery (Hiccu	ıp Mode 0.7Hz t	/p.)	

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
WO L L C V II	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100kHz, 1V			2000	pF	
Switching Frequency			330		kHz	
MTBF(calculated) MIL-HDBK-217F@25°C, Ground Benign 2,596,000				Hours		
	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

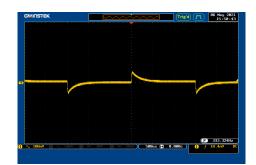
EMC Specifications						
Parameter		Standards & Level Performance				
EMI	Conduction	EN 55032 Without external components		Class A		
EMI ₍₅₎	Radiation	EN 33032	With external components	Class A		
	EN 55035					
	ESD	EN 61000-4-2 Air ± 8kV , Contact ±6kV		A		
	Radiated immunity	EN 61000-4-3 10V/m		A		
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		A		
	Surge	EN 61000-4-5 ±1kV		Α		
	Conducted immunity	EN 61000-4-6 10Vrms		Α		
	PFMF	EN 61000-4-8 3A/m		A		


Environmental Specifications				
Parameter		Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)		-40	+80	°C
Case Temperature			+100	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
RFI		Six-Sided Shielded, Metal Case		
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

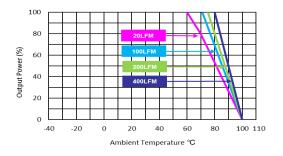
Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a fast blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

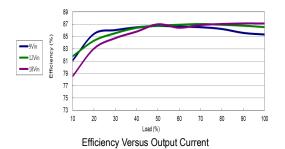
All test conditions are at 25°C The figures are identical for MJW10-12S033

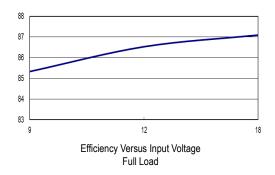


Efficiency Versus Output Current

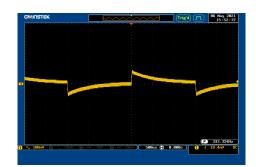

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

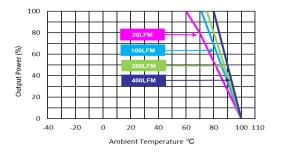
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

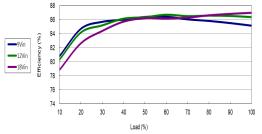


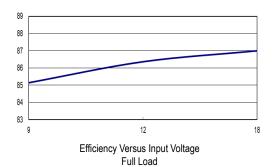
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C $\,$ The figures are identical for MJW10-12S05 $\,$

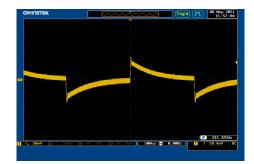

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

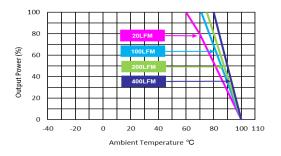

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

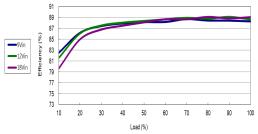
MJW10 Series - EC Notes 6



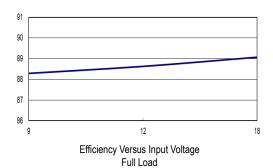
Efficiency Versus Output Current

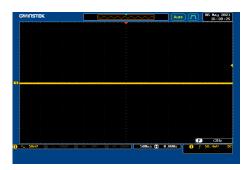

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

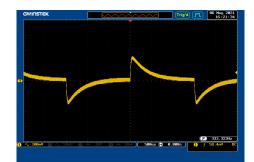
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



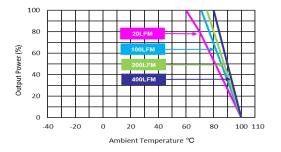
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$



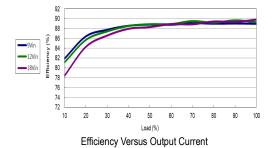

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

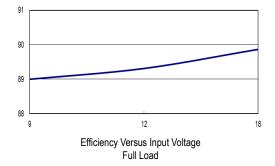


Efficiency Versus Output Current

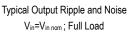

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

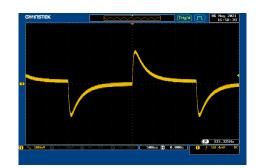
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

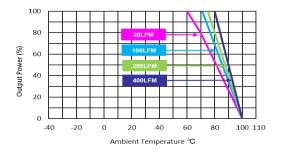

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$



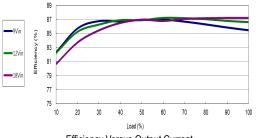
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



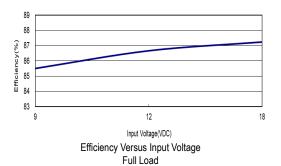

All test conditions are at 25°C $\,$ The figures are identical for MJW10-12S15 $\,$



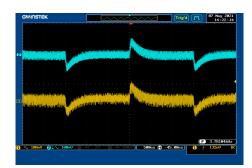
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$



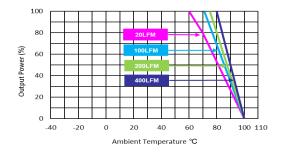
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



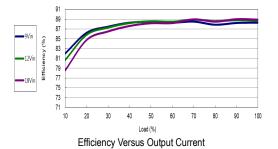
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

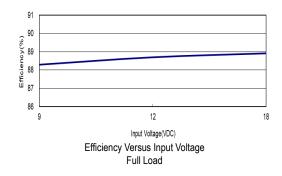


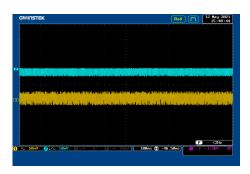
Efficiency Versus Output Current


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

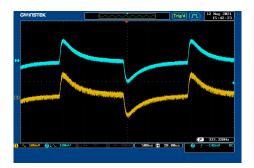
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

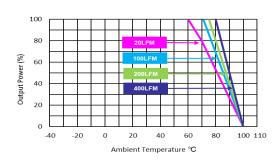

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$



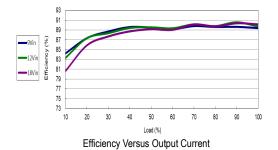

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

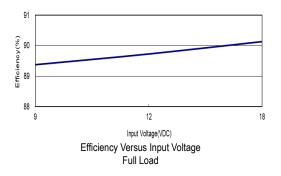
All test conditions are at 25°C The figures are identical for MJW10-12D12

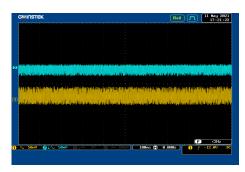


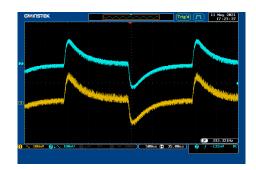

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

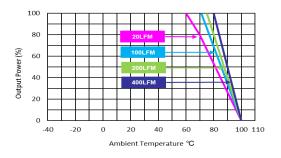
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

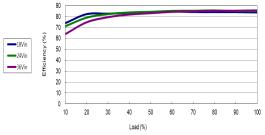


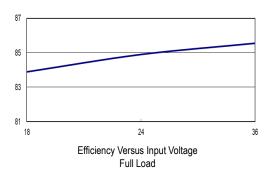

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MJW10-12D15

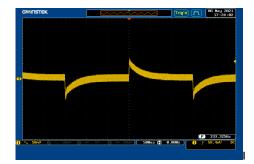

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

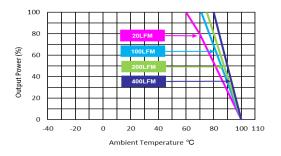

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Date:2024-05-08 Rev:5

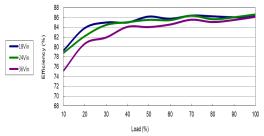


Efficiency Versus Output Current

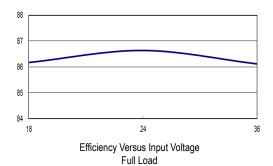



Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

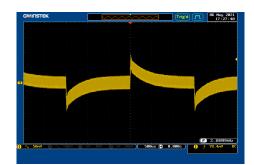
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



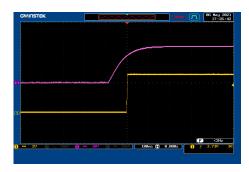
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

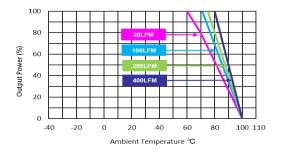


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

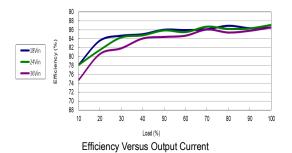


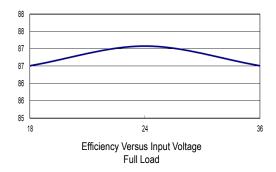
Efficiency Versus Output Current

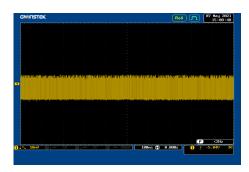



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

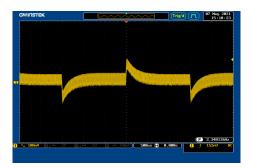
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

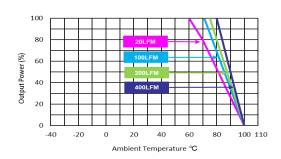



Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

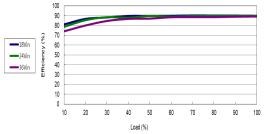


Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom}

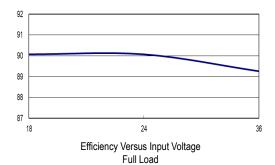


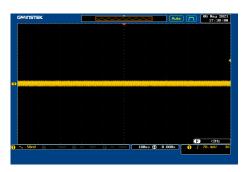

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

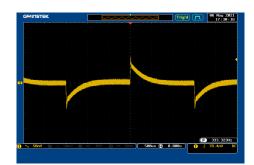
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load



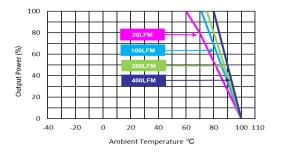
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$



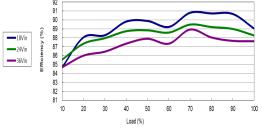

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom}



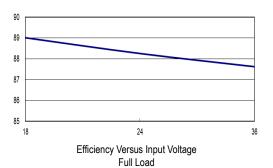
Efficiency Versus Output Current


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

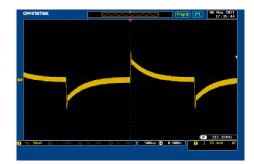
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



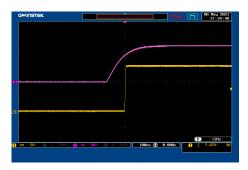
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

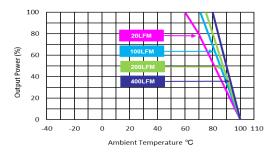


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

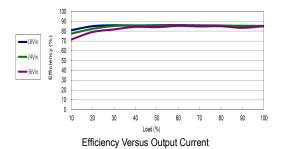


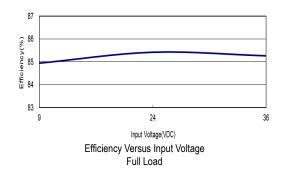
Efficiency Versus Output Current

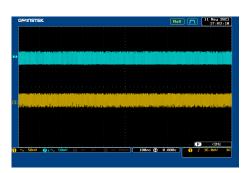



Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

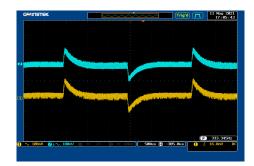
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

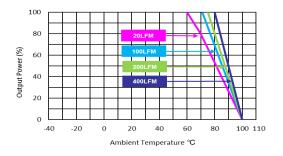



Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

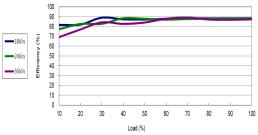


Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom}

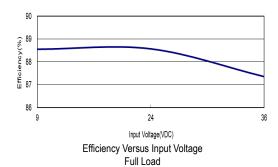


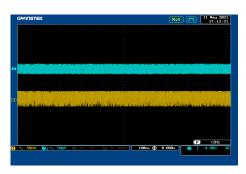

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

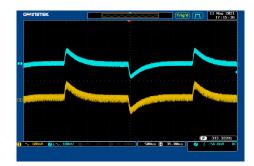
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



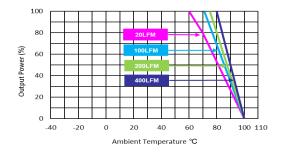
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$



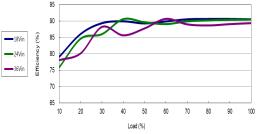

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

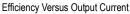


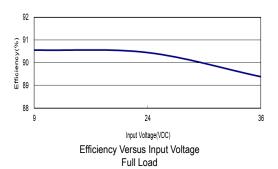
Efficiency Versus Output Current

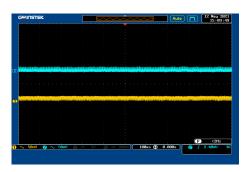

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

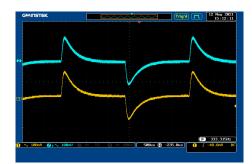
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

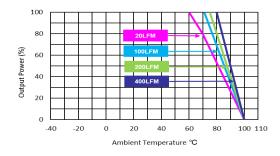



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{--}V_{\text{in nom}}\text{ ; Full Load}$

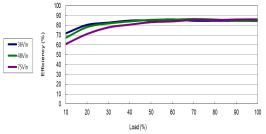



Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

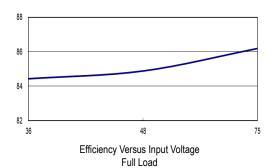



Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

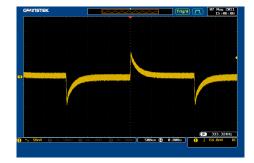
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



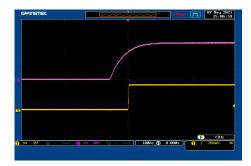
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

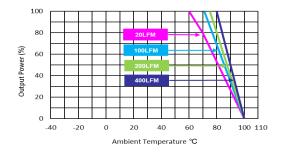


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

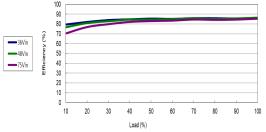


Efficiency Versus Output Current

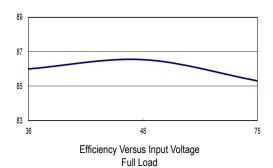



Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

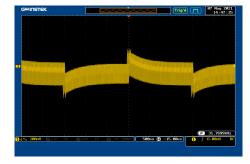
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



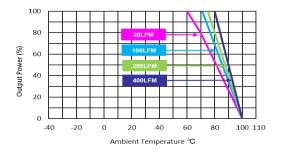
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$



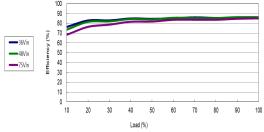
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



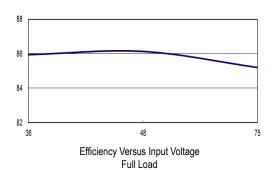
Efficiency Versus Output Current

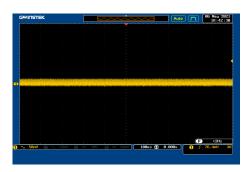

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

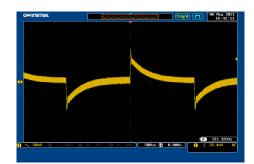
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



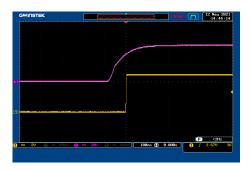
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$




Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

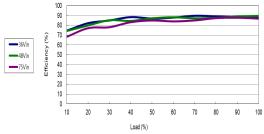


Efficiency Versus Output Current

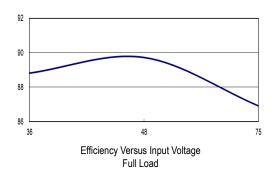


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

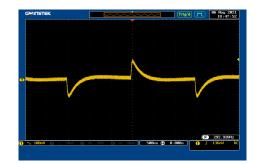
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



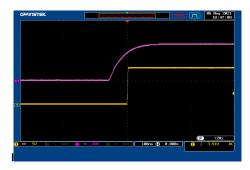
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{--}V_{\text{in nom}}\text{ ; Full Load}$

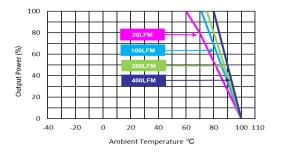


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

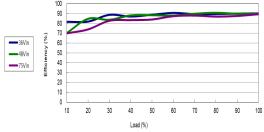


Efficiency Versus Output Current

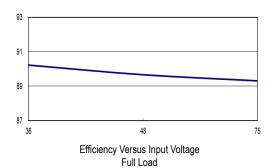


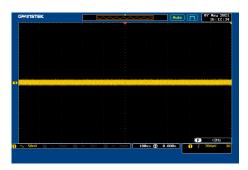

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

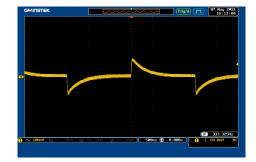
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$



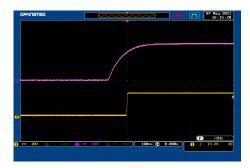
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{--}V_{\text{in nom}}\text{ ; Full Load}$

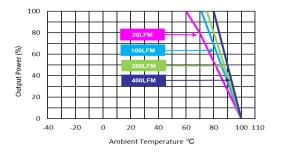



Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

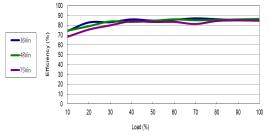


Efficiency Versus Output Current

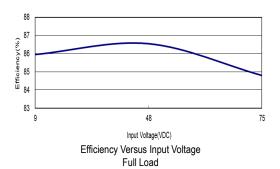


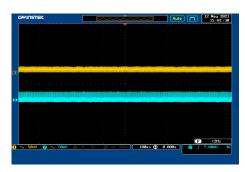

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

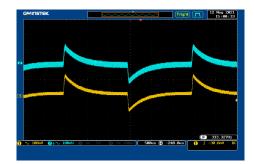
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



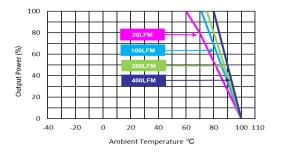
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$



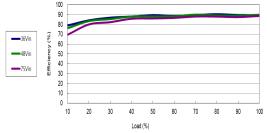

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in} \, \text{nom}} \; ; \text{Full Load}$



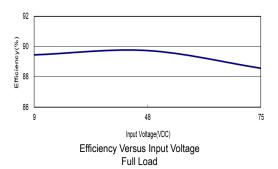
Efficiency Versus Output Current

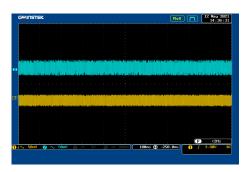

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

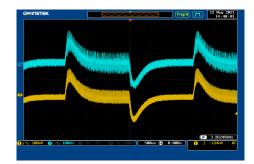
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



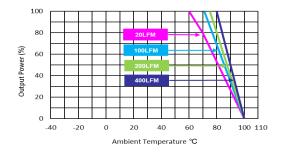
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \, ; \, \text{Full Load}$



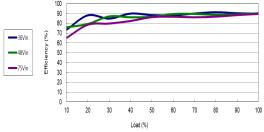

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} \! = \! V_{\text{in} \, \text{nom}} \; ; \text{Full Load}$



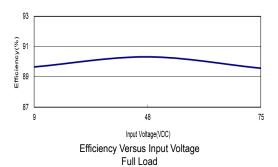
Efficiency Versus Output Current

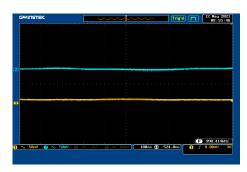

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

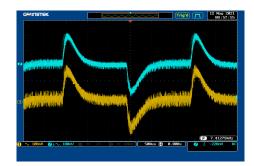
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



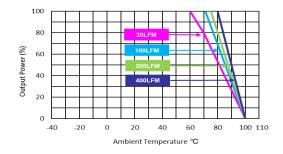
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{--}V_{\text{in nom}}\text{ ; Full Load}$




Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



Efficiency Versus Output Current


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{--}V_{\text{in nom}}\text{ ; Full Load}$

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

П						
ı	Pin Connections					
	Pin	Single Output	Dual Output	Diameter mm (inches)		
	1	+Vin	+Vin	Ø 1.0 [0.04]		
	2	-Vin	-Vin	Ø 1.0 [0.04]		
	3	+Vout	+Vout	Ø 1.0 [0.04]		
	4	No Pin	Common	Ø 1.0 [0.04]		
	5	-Vout	-Vout	Ø 1.0 [0.04]		
	6	Remote On/0	Ø 1.0 [0.04]			

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

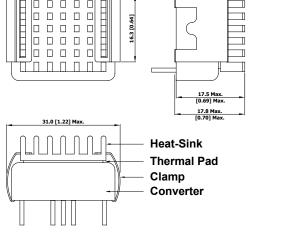
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 25.4x25.4x10.2mm (1.0x1.0x0.4 inches)

Case Material : Metal With Non-Conductive Baseplate

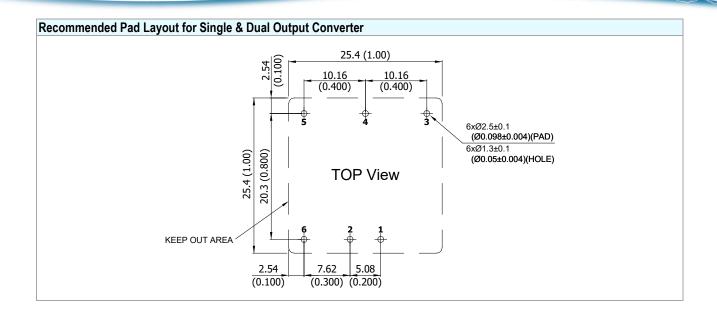
Base Material : FR4 PCB (flammability to UL 94V-0 rated)


Pin Material : Copper Alloy

Weight : 15g

Heatsink (Option –HS)

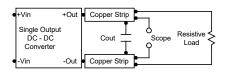
Mechanical Dimensions

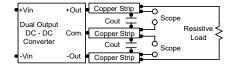

Heatsink Material: Aluminum

Finish: Anodic treatment (black)

Weight: 2g

- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.





Test Setup

Peak-to-Peak Output Noise Measurement Test

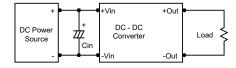
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

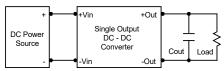
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500uA.

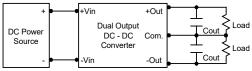
Overload Protection


To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 12μ F for the 12V, 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

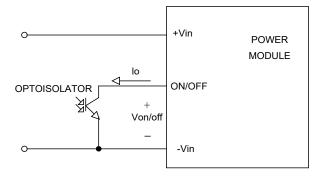
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.

Maximum Capacitive Load

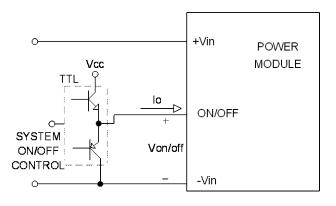
The MJW10 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

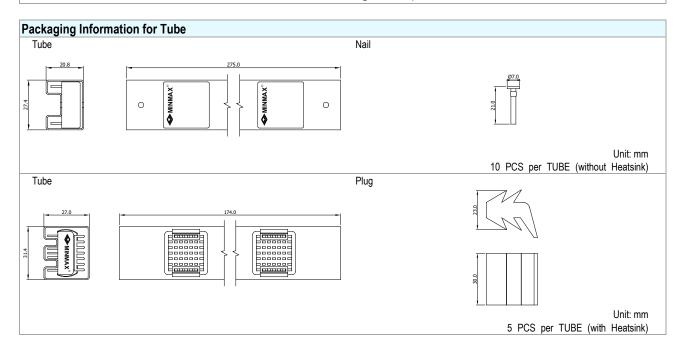
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.



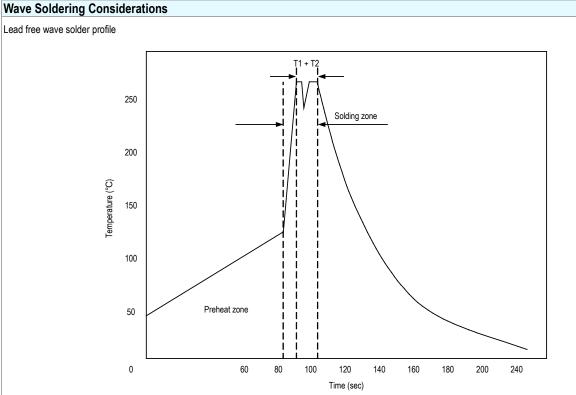
Date:2024-05-08 Rev:5



Remote On/Off Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF


Level Control Using TTL Output

Date:2024-05-08 Rev:5

MJW10 Series - EC Notes 32

Zone	Reference Parameter	
Preheat	Rise temp. speed : 3°C/sec max.	
zone	Preheat temp. : 100~130°C	
Actual	Peak temp. : 250~260°C	
heating	Peak time(T1+T2): 4~6 sec	

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Date:2024-05-08 Rev:5

Part Number Structure W 10 12 S 033 M Wide 2:1 Output Power Output Quantity Package Type Input Voltage Range Output Voltage 1" X 1" Input Voltage Range 10 Watt VDC 12: 9 18 VDC S: Single 033: 3.3 VDC 24: 18 36 VDC D: Dual 05: 5 75 VDC 5.1 VDC 48: 051: 12: 12 VDC 15: 15 VDC

MTBF and Reliability

The MTBF of MJW10 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MJW10-12S033	2,873,000	
MJW10-12S05	3,009,000	
MJW10-12S051	3,103,000	
MJW10-12S12	3,273,000	
MJW10-12S15	3,274,000	
MJW10-12D05	2,603,000	
MJW10-12D12	3,195,000	
MJW10-12D15	3,077,000	
MJW10-24S033	2,672,000	
MJW10-24S05	3,128,000	
MJW10-24S051	3,128,000	
MJW10-24S12	3,485,000	Hours
MJW10-24S15	3,569,000	nouis
MJW10-24D05	3,109,000	
MJW10-24D12	3,234,000	
MJW10-24D15	3,439,000	
MJW10-48S033	2,870,000	
MJW10-48S05	3,722,000	
MJW10-48S051	3,573,000	
MJW10-48S12	2,899,000	
MJW10-48S15	3,507,000	
MJW10-48D05	3,503,000	
MJW10-48D12	3,269,000	
MJW10-48D15	3,109,000	

Date:2024-05-08 Rev:5

MTBF and Reliability (continued)

The MTBF of MJW10 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

MJW10-12S033-RC	2,864,000	
MJW10-12S05-RC	2,999,000	
MJW10-12S051-RC	3,093,000	
MJW10-12S12-RC	3,262,000	
MJW10-12S15-RC	3,263,000	
MJW10-12D05-RC	2,596,000	
MJW10-12D12-RC	3,184,000	
MJW10-12D15-RC	3,067,000	
MJW10-24S033-RC	2,664,000	
MJW10-24S05-RC	3,117,000	
MJW10-24S051-RC	3,117,000	
MJW10-24S12-RC	3,472,000	Haura
MJW10-24S15-RC	3,556,000	Hours
MJW10-24D05-RC	3,099,000	
MJW10-24D12-RC	3,223,000	
MJW10-24D15-RC	3,427,000	
MJW10-48S033-RC	2,869,000	
MJW10-48S05-RC	3,721,000	
MJW10-48S051-RC	3,572,000	
MJW10-48S12-RC	2,890,000	
MJW10-48S15-RC	3,506,000	
MJW10-48D05-RC	3,502,000	
MJW10-48D12-RC	3,268,000	
MJW10-48D15-RC	3,099,000	