

MIW03M Series EC Note

DC-DC CONVERTER 3.5W, DIP Package

Features

- Industrial Standard DIP-24 Package
- ➤ Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ►I/O Isolation 5000VAC with Reinforced Insulation, rated for 250Vrms
 Working Voltage
- ▶ Creepage & Clearance Distance meet 8mm
- ► Low I/O Leakage Current < 2µA</p>
- ▶ Operating Ambient Temp. Range -40°C to 96°C
- No Min. Load Requirement
- ► Under-Voltage, Overload/Voltage and Short Circuit Protection
- ► Conducted EMI EN 55011 Class A Approved
- ► Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking
- Risk Management Report Acquisition according to ISO 14971

Applications

- ▶ Distributed power architectures
- Workstations
- ➤ Computer equipment
- Communications equipment

Product Overview

Introducing the MINMAX MIW03M series – an innovative range of high-performance 3.5W medical-approved DC-DC converters encapsulated in a DIP-24 package, purposefully designed for medical applications. With an extensive selection of 21 models supporting input voltages of 5, 12, 24, and 48VDC, featuring a wide 2:1 input range and fixed output voltage, this series ensures adaptability to diverse medical device specifications.

The MIW03M series boasts an I/O isolation specified for 5000VAC with reinforced insulation, rated for a reliable 250Vrms working voltage. Advanced features include under-voltage, overload, over-voltage, and short-circuit protection, along with no minimum load requirement, conducted EMI EN 55011 class A approval, low I/O leakage current of $2\mu A$ max, and an operating ambient temperature range from -40°C to +96°C without derating, achieved through high efficiency up to 87%.

Aligned with the 4th edition medical EMC standard, the MIW03M series holds medical safety approval with 2xMOPP (Means Of Patient Protection) per the 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1, incorporating an 8mm creepage and clearance.

In adherence to ISO 14971 Medical Device Risk Management, the MIW03M series undergoes a thorough risk assessment process. This ensures not only compliance with high-performance standards but also alignment with the stringent safety benchmarks outlined in ISO 14971. Elevate your medical devices with the MINMAX MIW03M series – the integration of advanced technology, safety, performance, and Medical Device Risk Management Report Acquisition.

Table of contents

Model Selection GuideI	P2 Recommended Pad Layout for Single & Dual Output Converter	P26
Input SpecificationsI	P2 Test Setup	P27
Output SpecificationsI	P3 Technical Notes	P27
Isolation, Safety Standards	Packaging Information for Tube	P28
General SpecificationsI	Wave Soldering Considerations	P28
EMC SpecificationsI	P3 Hand Welding Parameter	P28
Environmental SpecificationsI	P4 Part Number Structure	P29
Characteristic CurvesI	P5 MTBF and Reliability	P29
Package SpecificationsP	26	

Date:2024-04-02 Rev:7

Model Selection	Guide								
Model	Input	Output	Output	Input		Over	Max. capacitive	Efficiency	
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)	
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%	
MIW03-05S05M		5	700	843		6.2	750	83	
MIW03-05S058M		5.8	600	839	20	6.2	560	83	
MIW03-05S12M	5	12	290	829	20	15	130	84	
MIW03-05S15M	(4.5 ~ 9)	15	235	839		18	100	84	
MIW03-05D12M		±12	±145	829	25	±15	75#	84	
MIW03-05D15M		±15	±115	821	35	±18	56#	84	
MIW03-12S05M		5	700	351			6.2	750	83
MIW03-12S12M	40	12	290	333	8	15	130	87	
MIW03-12S15M	12	15	235	338	13	18	100	87	
MIW03-12D12M	(9~18)	±12	±145	333		±15	75#	87	
MIW03-12D15M		±15	±115	330	13	±18	56#	87	
MIW03-24S05M		5	700	176		6.2	750	83	
MIW03-24S12M	0.4	12	290	169		15	130	86	
MIW03-24S15M	24	15	235	169	6	18	100	87	
MIW03-24D12M	(18 ~ 36)	±12	±145	167		±15	75#	87	
MIW03-24D15M		±15	±115	167		±18	56#	86	
MIW03-48S05M		5	700	88		6.2	750	83	
MIW03-48S12M	40	12	290	84		15	130	86	
MIW03-48S15M	48	15	235	86	4	18	100	85	
MIW03-48D12M	(36 ~75)	±12	±145	86		±15	75#	84	
MIW03-48D15M		±15	±115	86		±18	56#	84	

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	5V Input Models	-0.7		15	
Innut Compa Valtaga (4 and man)	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	5V Input Models			4.5	
	12V Input Models			9	VDC
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	5V Input Models		4		
Hadaa Valla oo Obuldaaa	12V Input Models		8		
Under Voltage Shutdown	24V Input Models		16		
	48V Input Models		34		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models Internal Pi Type				

Date:2024-04-02 Rev:7

Output Specifications						
Parameter	Con	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output, I	Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to M	Vin=Min. to Max. @Full Load				%
Load Regulation	lo=0%			±0.5	%	
Load Cross Regulation (Dual Output)	Asymmetrical Load			±5.0	%	
Minimum Load		No minimum Load	Requirement			
Ripple & Noise	0-20 MHz Bandwidth	Measured with a 1µF MLCC			70	mV _{P-P}
Transient Recovery Time	050/ 11	01 01		300		μsec
Transient Response Deviation	25% L0a0	Step Change		±3	±5	%
Temperature Coefficient						%/°C
Over Load Protection			150		%	
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 0.5Hz typ.)				

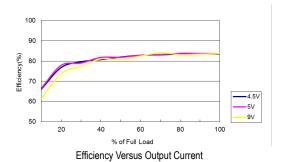
Isolation, Safety Standards									
Parameter	Conditions	Min.	Тур.	Max.	Unit				
I/O Isolation Voltage	60 Seconds								
	Reinforced insulation, rated for 250Vrms working voltage	5000			VAC				
Leakage Current	240VAC, 60Hz			2	μA				
I/O Isolation Resistance	500 VDC	10			GΩ				
I/O Isolation Capacitance	100kHz, 1V			40	pF				
Cofety Chandenda	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1								
Safety Standards	IEC/EN 60601-1 3 rd E	IEC/EN 60601-1 3 rd Edition 2xMOPP							
Safety Approvals	ANSI/AAMI ES60601-1 2xMOPP recognition(UL certificate), IEC/EN 60601-1 3rd Edition(CB-report)								

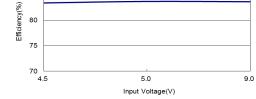
General Specifications									
Parameter Conditions		Min.	Тур.	Max.	Unit				
Switching Frequency			330		kHz				
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	5,815,448			Hours				

Parameter		Standards & Level						
EMI ₍₅₎	Conduction	EN 55011	Without external components	Class A				
	Radiation	EIN 330 I I	With external components	Class A				
	EN 60601-1-2 4 th							
	ECD.	Direct discharge	Indirect discharge HCP & VCP					
	ESD	EN 61000-4-2 Air ± 15kV	Contact ± 8kV	A				
EMC	Radiated immunity	EN 61000	-4-3 10V/m	Α				
EMS ₍₅₎	Fast transient	EN 61000	0-4-4 ±2kV	Α				
	Surge	EN 61000	Α					
	Conducted immunity	EN 61000-4-6 10Vrms						
	PFMF	EN 61000-4-8 100A/m						

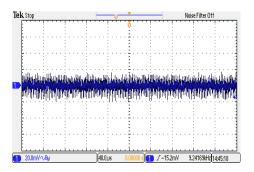
Date:2024-04-02 Rev:7 MIW03M Series – EC Notes 3

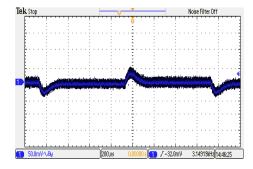
Environmental Specifications							
Parameter	Min.	Max.	Unit				
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+96	°C				
Case Temperature		+105	°C				
Storage Temperature Range	-50	+125	°C				
Humidity (non condensing)		95	% rel. H				
Lead Temperature (1.5mm from case for 10Sec.)		260	°C				


Notes

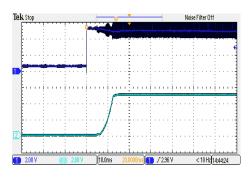

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

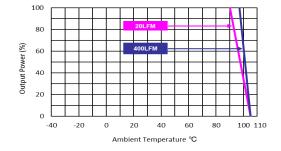
Date:2024-04-02 Rev:7 MIW03M Series – EC Notes 4


All test conditions are at 25°C The figures are identical for MIW03-05S05M



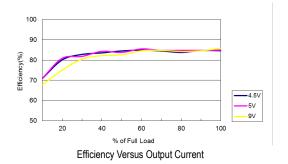
85

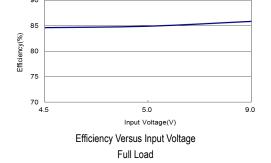

Efficiency Versus Input Voltage Full Load



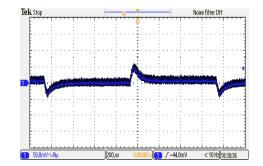
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

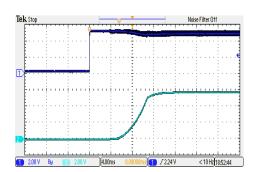


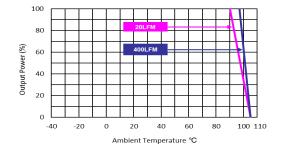

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$



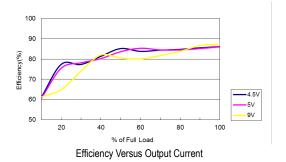
All test conditions are at 25°C The figures are identical for MIW03-05S058M

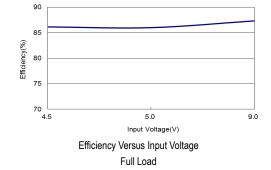


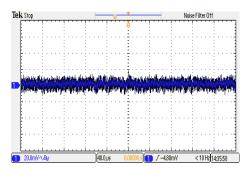


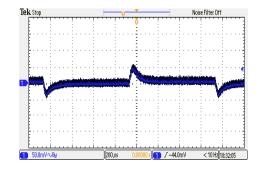
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

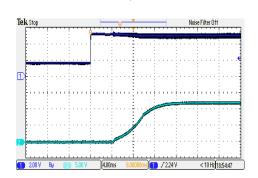


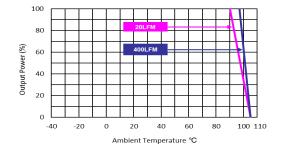

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



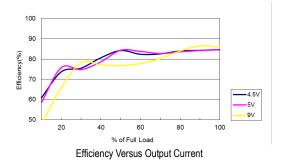
All test conditions are at 25°C $\,$ The figures are identical for MIW03-05S12M $\,$

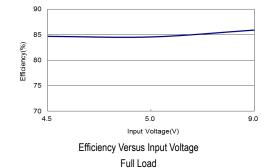


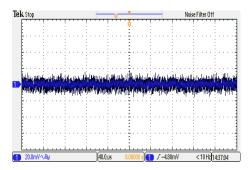


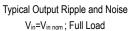
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

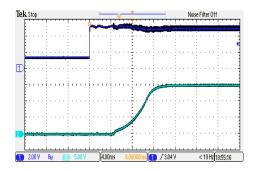
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

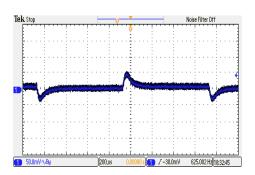


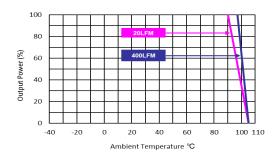

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

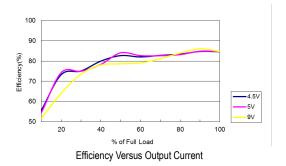


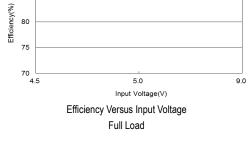

All test conditions are at 25°C $\,$ The figures are identical for MIW03-05S15M $\,$



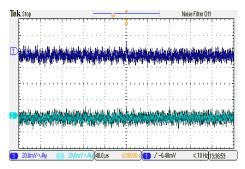


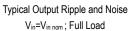
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

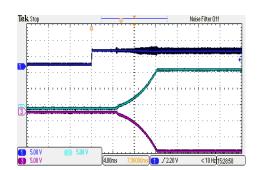

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$



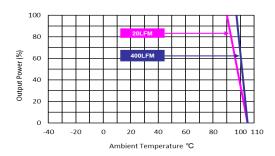
Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



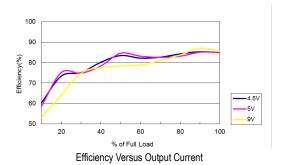

All test conditions are at 25°C $\,$ The figures are identical for MIW03-05D12M $\,$



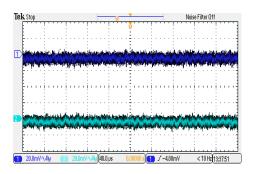

90

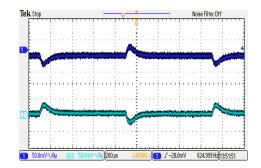


Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

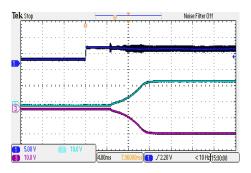

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

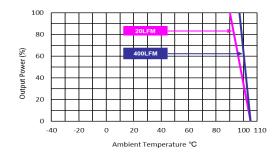



Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}



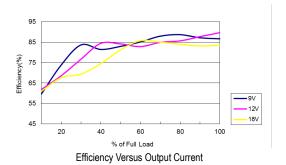
All test conditions are at 25°C $\,$ The figures are identical for MIW03-05D15M $\,$

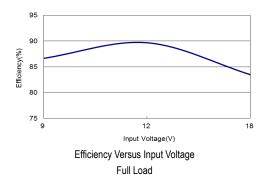


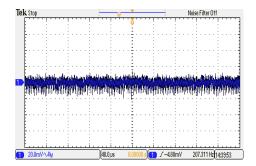


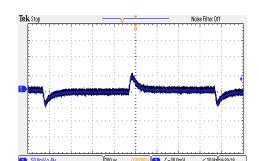
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

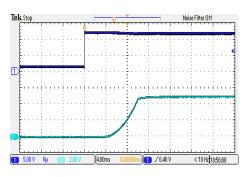


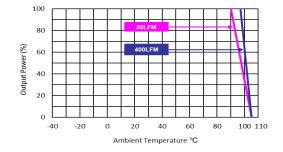

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



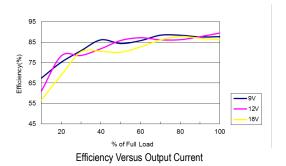
All test conditions are at 25°C The figures are identical for MIW03-12S05M

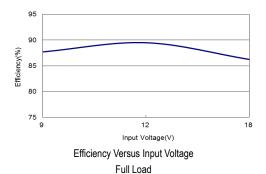


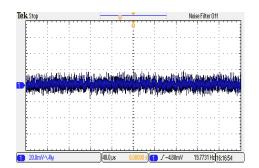


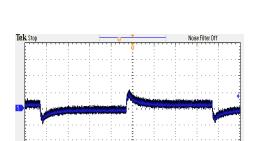
Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

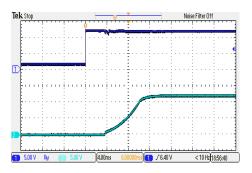


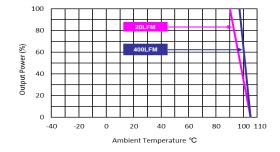

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



All test conditions are at 25°C $\,$ The figures are identical for MIW03-12S12M $\,$

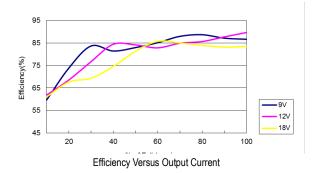


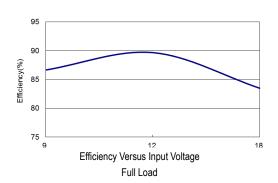


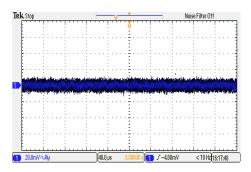
Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

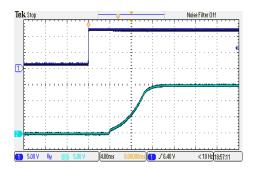
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

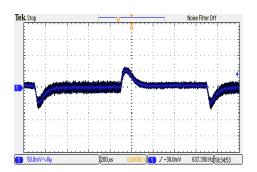
18:34:16 €24.978 Hz

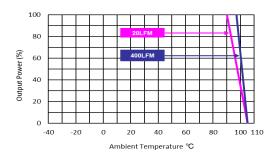



Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

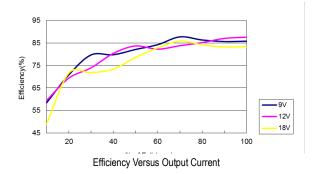

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

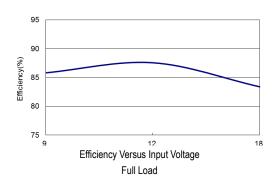

All test conditions are at 25°C $\,$ The figures are identical for MIW03-12S15M $\,$

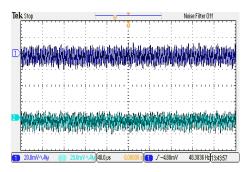


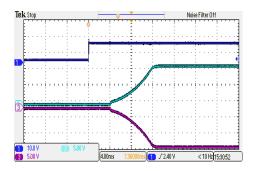

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

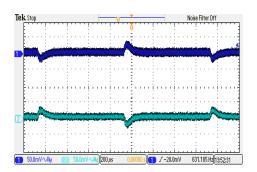
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

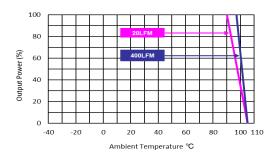

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$



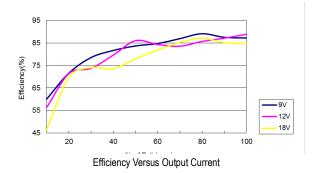

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

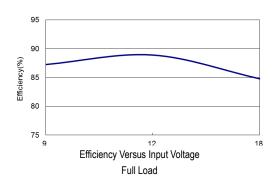

All test conditions are at 25°C $\,$ The figures are identical for MIW03-12D12M $\,$



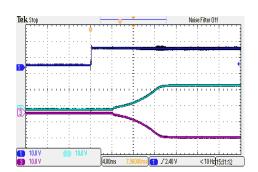

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

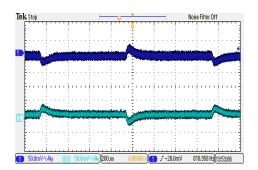
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

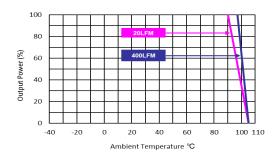

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$



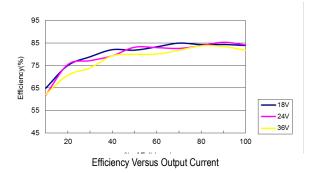
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

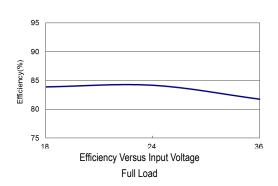

All test conditions are at 25°C $\,$ The figures are identical for MIW03-12D15M $\,$

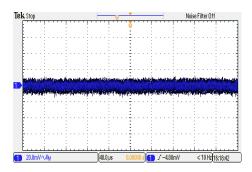


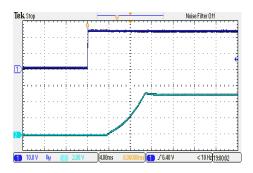

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

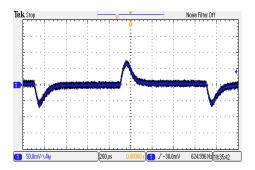
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

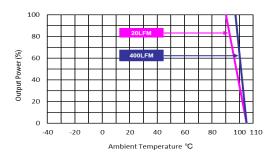

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$




Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

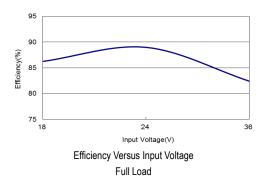

All test conditions are at 25°C The figures are identical for MIW03-24S05M

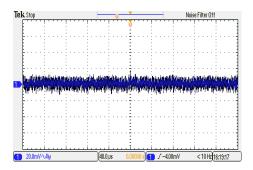


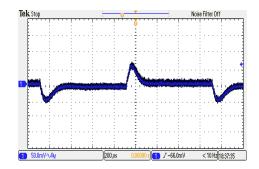

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

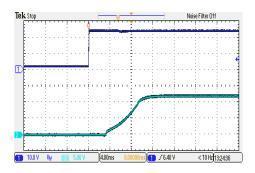
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

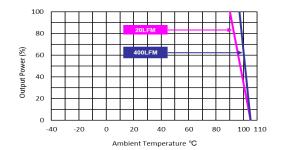



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



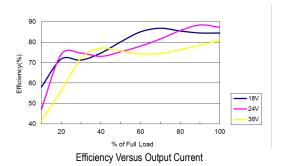
All test conditions are at 25°C $\,$ The figures are identical for MIW03-24S12M $\,$

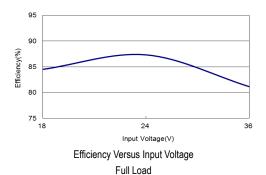


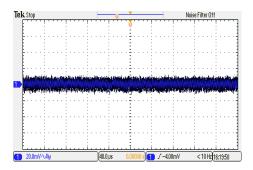


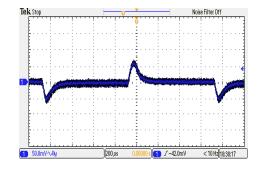
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

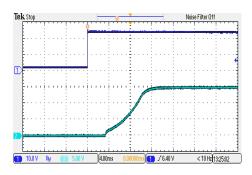


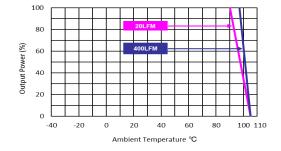

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$



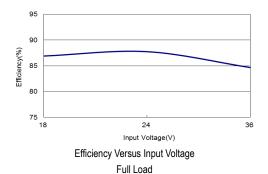
All test conditions are at 25°C $\,$ The figures are identical for MIW03-24S15M $\,$

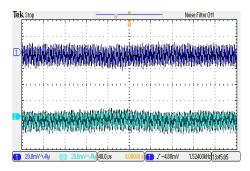


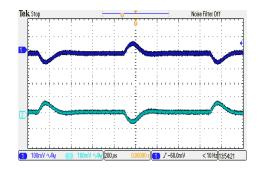


Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

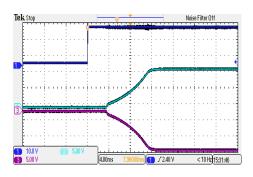
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

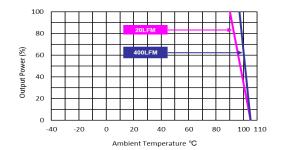

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$



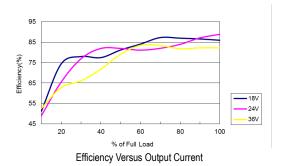
All test conditions are at 25°C $\,$ The figures are identical for MIW03-24D12M $\,$

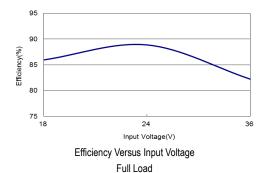


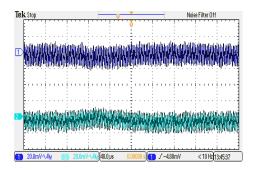


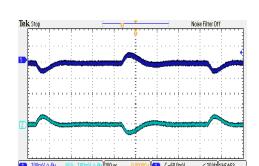
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

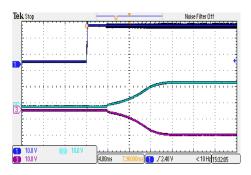


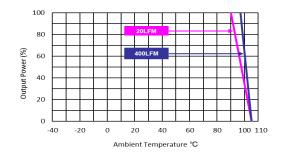

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



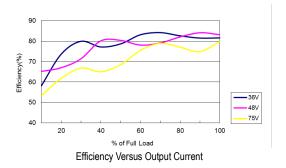
All test conditions are at 25°C $\,$ The figures are identical for MIW03-24D15M $\,$

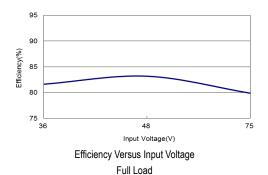


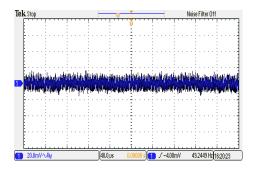


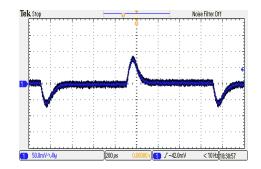
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

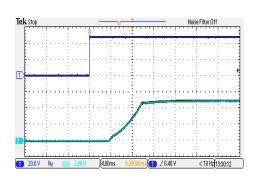


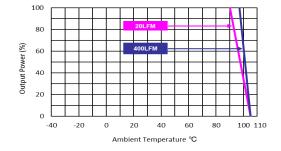

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$



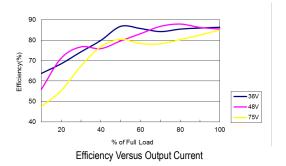
All test conditions are at 25°C The figures are identical for MIW03-48S05M

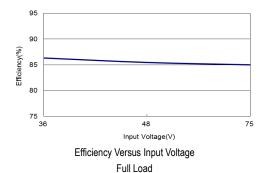


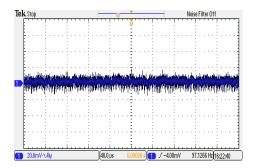


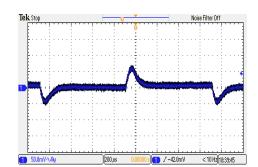
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

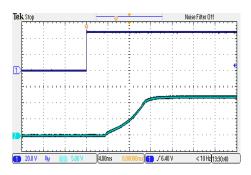


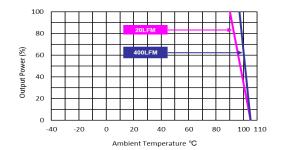

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}\text{=}V_{\text{in nom}}$



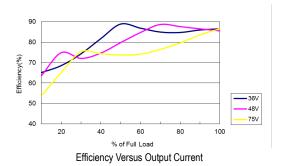
All test conditions are at 25°C $\,$ The figures are identical for MIW03-48S12M $\,$

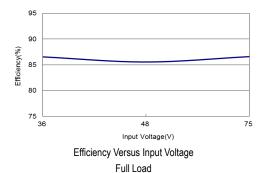


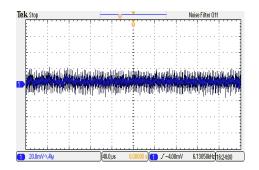


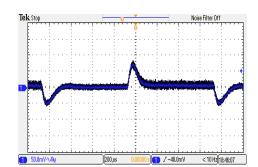
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

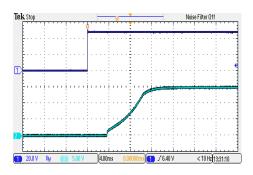


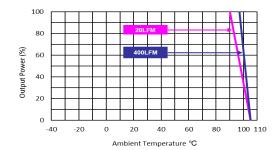

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



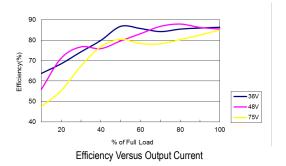
All test conditions are at 25°C The figures are identical for MIW03-48S15M

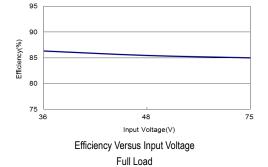


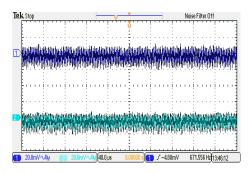


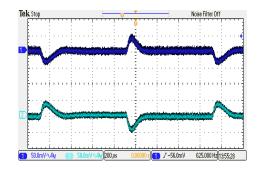
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

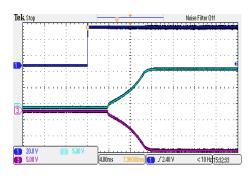


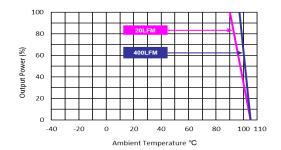

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



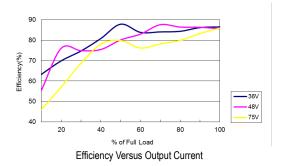
All test conditions are at 25°C $\,$ The figures are identical for MIW03-48D12M $\,$

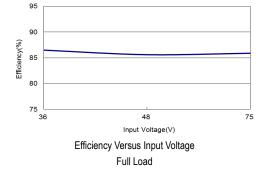


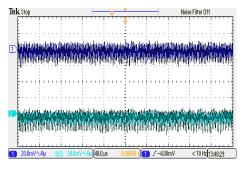


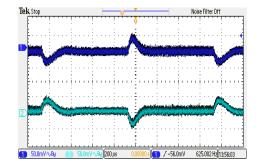
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,; \text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

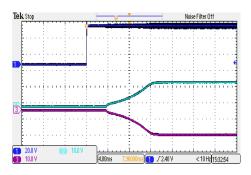


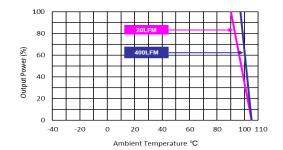

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}\text{ ; Full Load}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



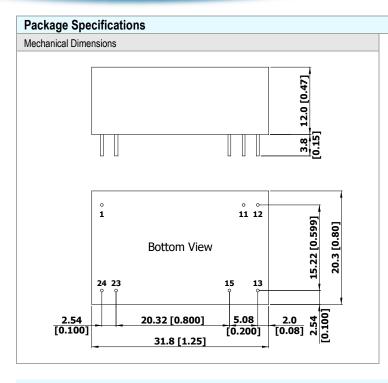
All test conditions are at 25°C $\,$ The figures are identical for MIW03-48D15M $\,$





Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



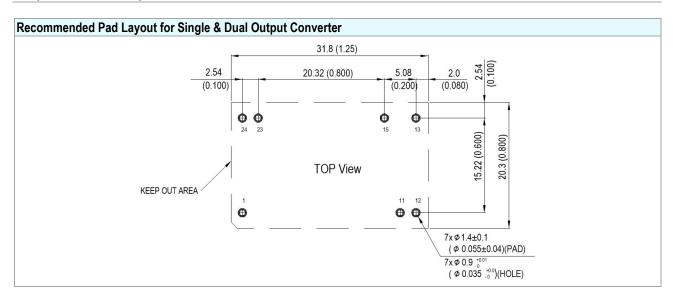
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

Pin Cor	Pin Connections								
Pin	Single Output	Dual Output	Diameter mm (inches)						
1	+Vin	+Vin	Ø 0.6 [0.02]						
11	No Pin	Common	Ø 0.6 [0.02]						
12	-Vout	No Pin	Ø 0.6 [0.02]						
13	+Vout	-Vout	Ø 0.6 [0.02]						
15	No Pin	+Vout	Ø 0.6 [0.02]						
23	-Vin	-Vin	Ø 0.6 [0.02]						
24	-Vin	-Vin	Ø 0.6 [0.02]						

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

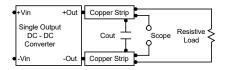

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

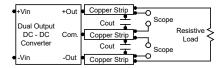
Physical Characteristics

Case Size : 31.8x20.3x12.0mm (1.25x0.80x0.47 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Weight : 15.5g





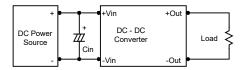
Test Setup

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

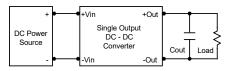
Technical Notes

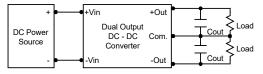
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

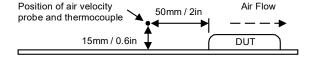
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance

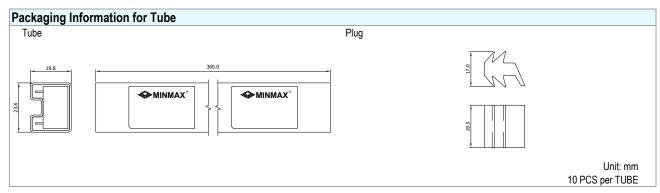

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $22\mu\text{F}$ for the 5V input devices and a $10\mu\text{F}$ for the 12V input devices and a $4.7\mu\text{F}$ for the 24V input devices and a $2.2\mu\text{F}$ for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

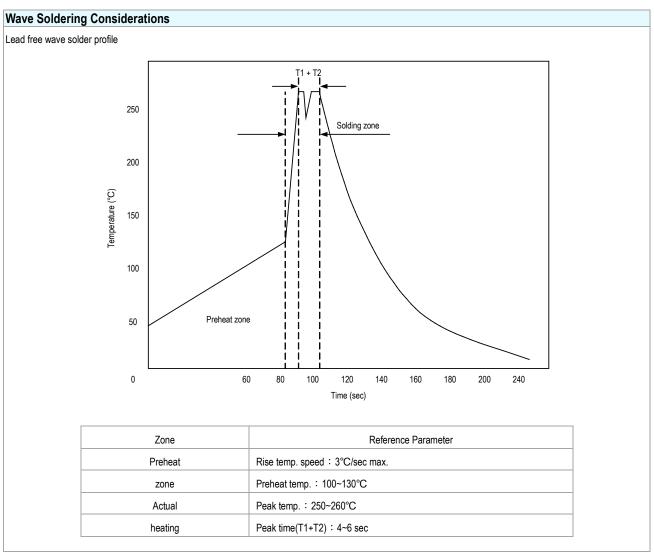
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.



Maximum Capacitive Load


The MIW03M series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part I	Number Struc	ture													
M	<u> </u>	W	03	-			05				S		05		M
	Package Type	Wide 2:1	Output Power		lı	put V	oltage	Rang	ge	Outpu	it Quantity	Out	put Vo	Itage	Application
	DIP-24	Input Voltage Range	3.5 Watt		05:	4.5	~	9	VDC	S:	Single	05:	5	VDC	Medical
					12:	9	~	18	VDC	D:	Dual	058:	5.8	VDC	
					24:	18	~	36	VDC			12:	12	VDC	
					48:	36	~	75	VDC			15:	15	VDC	

MTBF and Reliability

The MTBF of MIW03M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MIW03-05\$05M	5,815,448	
MIW03-05S058M	5,815,624	
MIW03-05S12M	6,550,077	
MIW03-05\$15M	6,469,133	
MIW03-05D12M	6,243,079	
MIW03-05D15M	6,125,684	
MIW03-12S05M	6,276,235	
MIW03-12S12M	6,935,581	
MIW03-12S15M	6,842,047	
MIW03-12D12M	6,599,533	
MIW03-12D15M	6,490,243	Hours
MIW03-24S05M	6,277,101	
MIW03-24S12M	6,841,141	
MIW03-24S15M	6,842,430	
MIW03-24D12M	6,629,863	
MIW03-24D15M	6,411,241	
MIW03-48S05M	6,323,086	
MIW03-48S12M	6,715,023	
MIW03-48S15M	6,756,621	
MIW03-48D12M	6,445,972	
MIW03-48D15M	6,336,217	