

MDWI12 Series EC Note

DC-DC CONVERTER 12W, Regulated Output, DIP Package

Features

- Smallest Encapsulated 12W Converter
- Industrial Standard DIP-16 Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +85°C
- Low No Load Power Consumption
- No Min. Load Requirement
- Under-voltage, Overload and Short Circuit Protection
- Shielded Metal Case with Insulated Baseplate
- Conducted EMI EN 55032 Class A
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview


The MDWI12 series gives designers the flexibility to match the choice of converter to specific application requirements. The high power density of MDWI12 series, at 59W/in³, is expected to make it popular with manufacturers of industrial, medical, transportation and power generation equipment where space-constrained designs.

This product offers a full 12Watt isolated DC-DC converter within a small encapsulated DIP-16 package which occupied only 0.5in² of PCB space. There are 14 models available for 24 & 48VDC with ultra-wide 4:1 input voltage range. Further features included under-voltage protection, overload protection, short circuit protection, very low no load power consumption, no min. load requirement and conducted EMI class A approved as well. High efficiency allows operating temperatures range of -40°C to 85°C. All models have been qualified per the CB scheme with safety approvals to UL/cUL/IEC/EN 62368-1.

Table of contents

Model Selection Guide	P2 Recommended Pad Layout for Single & Dual Output Converter	P18
Input Specifications	P2 Test Setup	P19
Output Specifications	P2 Technical Notes	P19
General Specifications	P3 Packaging Information	P20
EMC Specifications	P3 Wave Soldering Considerations	P20
Environmental Specifications	P3 Hand Welding Parameter	P20
Characteristic Curves	P4 Part Number Structure	P21
Package Specifications P	18 MTBF and Reliability	P21

Date:2023-02-16 Rev:6

Number Vo (Ra V MDWI12-24S05 MDWI12-24S051	ltage V ange)	VDC 5	Output Power W 12	Output Current Max. mA	Inp Curr @Max. Load mA(typ.)	ent @No Load	Max. capacitive Load	Efficiency (typ.) @Max. Load
(Ra V MDWI12-24S05 MDWI12-24S051	ange)	VDC 5	W	Max. mA	@Max. Load	@No Load	-	
MDWI12-24S05 MDWI12-24S051		5		mA				@Max. Load
MDWI12-24S05 MDWI12-24S051		5			mA(typ.)	• // >		
MDWI12-24S051		-	12		nii ((yp.)	mA(typ.)	μF	%
		E 1		2400	602		1500	83
		5.1	12.24	2400	614		1500	83
MDWI12-24S12	04	12	12	1000	575		680	87
MDWI12-24S15	24	15	12	800	568	10	680	88
MDWI12-24S24	~ 36)	24	12	500	568		220	88
MDWI12-24D12		±12	12	±500	575		#470	87
MDWI12-24D15		±15	12	±400	575		#220	87
MDWI12-48S05		5	12	2400	301		1500	83
MDWI12-48S051		5.1	12.24	2400	307		1500	83
MDWI12-48S12	40	12	12	1000	287		680	87
MDWI12-48S15	48	15	12	800	284	7	680	88
MDWI12-48S24	~ 75)	24	12	500	284		220	88
MDWI12-48D12		±12	12	±500	287		#470	87
MDWI12-48D15		±15	12	±400	287		#220	87

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Innut Surge Veltage (1 and may)	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	VDC
	24V Input Models		8		
Under Voltage Shutdown	48V Input Models		16		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		mS
Input Filter	All Models		Internal	Рі Туре	

I	^ ·			
I	())))+	nut Sr	2001tic	atione
I	Ouu	ບບເວເ	JECIIIC	ations

Parameter	Cond	litions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output, B	alanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Ma	ax. @Full Load		±0.2	±0.8	%
Load Regulation	lo=0% t	o 100%			±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load	25/100% Full Load			±5.0	%
Minimum Load		No minimum Lo	ad Requiremer	nt		
Ripple & Noise	0-20 MHz Bandwidth	Measured with a 2.2µF/50V MLCC		70		mV _{P-P}
Transient Recovery Time	050/ 1				500	µsec
Transient Response Deviation	- 25% Load S	Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection	Hic	cup		160		%
Short Circuit Protection	C	Continuous, Automatic Recov	very (Hiccup Mo	ode 0.3Hz typ.)	

Date:2023-02-16 Rev:6

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
Isolation Voltage Input/Output to case		1000			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			2200	pF
Switching Frequency			480		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,314,289			Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL certific	ate), IEC/EN 6236	68-1 & 60950	-1(CB report)	

EMC Specifications

Parameter		Standards & Level		Performance
EMI	Conduction	EN 55032	Without external components	Class A
EMI ₍₅₎	Radiation	EN 55052	With external components	Class A
	EN 55035			
		Direct discharge	Indirect discharge HCP & VCP	Δ
	ESD	EN 61000-4-2 Air ± 8kV , Contact ± 6kV	Contact ± 6kV	A
EMC	Radiated immunity	EN 61000-4-3	20V/m	A
EMS(5)	Fast transient	EN 61000-4-4	±2kV	A
	Surge	EN 61000-4-5	±2kV	A
	Conducted immunity	EN 61000-4-6 1	I0Vrms	A
	PFMF	EN 61000-4-8 100A/m, 1	000A/m for 1 sec	A

Parameter	Model	Min.	Max.	Unit
	MDWI12-24S05, MDWI12-24S051, MDWI12-48S05 MDWI12-48S051		+50	
Operating Temperature Range Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	MDWI12-24S12, MDWI12-24S15, MDWI12-24S24 MDWI12-48S12, MDWI12-48S15, MDWI12-48S24 MDWI12-24D12, MDWI12-24D15, MDWI12-48D12 MDWI12-48D15	-40	+65	C
Case Temperature			+105	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

Notes

.

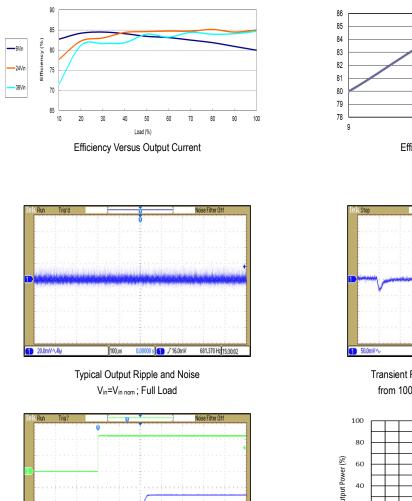
4 1 0

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.

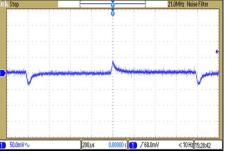
3 We recommend to protect the converter by a slow blow fuse in the input supply line.

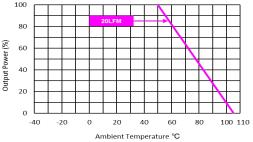
4 Other input and output voltage may be available, please contact MINMAX.


5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.

6 Specifications are subject to change without notice.

Characteristic Curves


All test conditions are at 25°C The figures are identical for MDWI12-24S05


1) 1) 200 V By (6) 500 V By[100ms 20000ms](6) /740 V <1018/162058

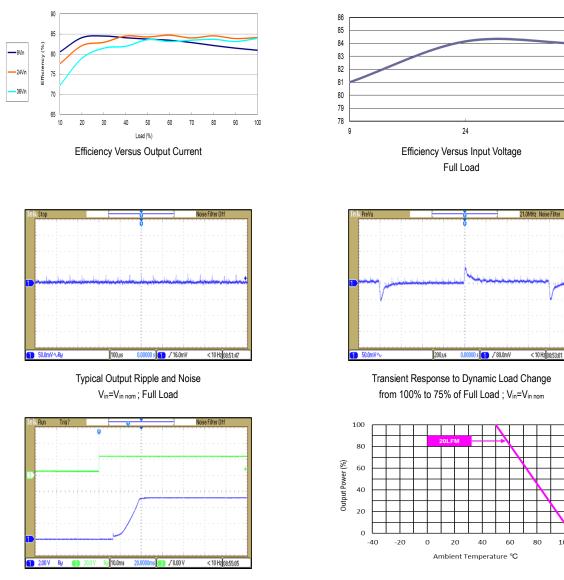
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

9 24 36 Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

Date:2023-02-16 Rev:6



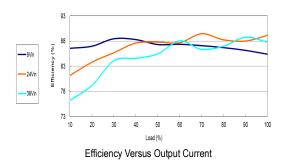
36

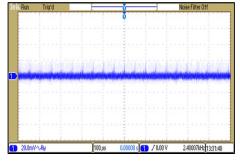
100 110

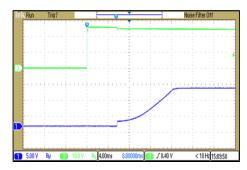
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-24S051 $\,$

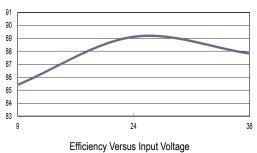
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

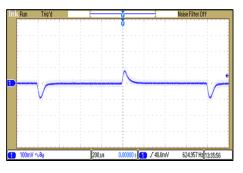

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

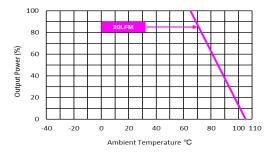

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-24S12

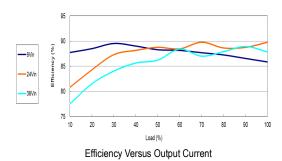


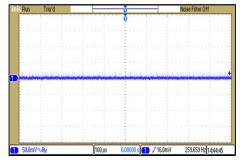

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

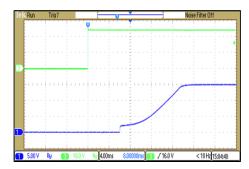

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Full Load

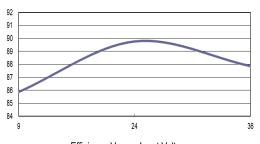
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

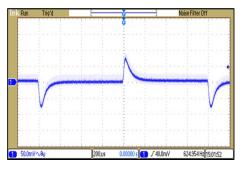

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

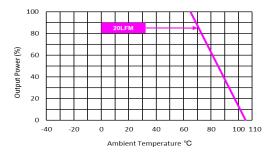

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-24S15

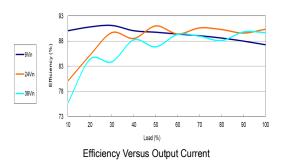


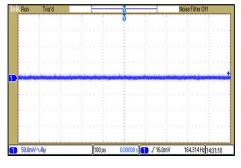

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

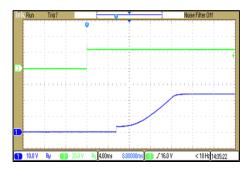

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

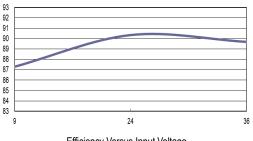
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

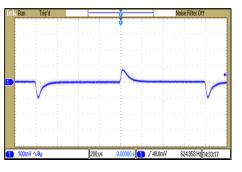

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

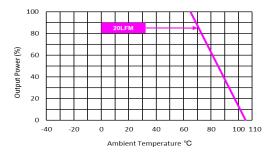

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-24S24

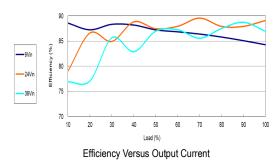


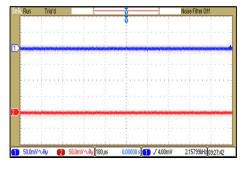

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

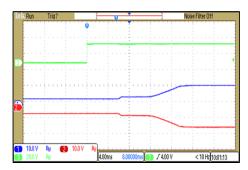

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

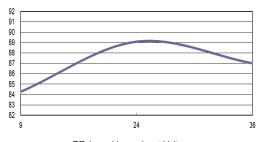
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

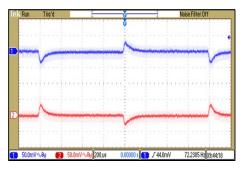

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

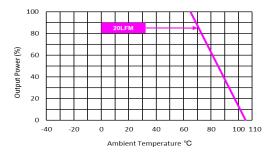

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-24D12 $\,$

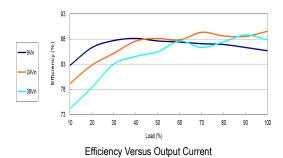


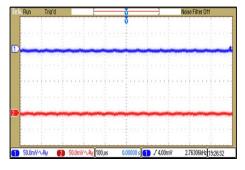

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

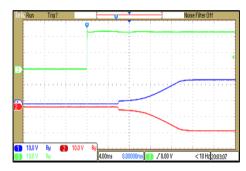

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

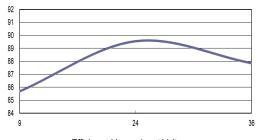
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

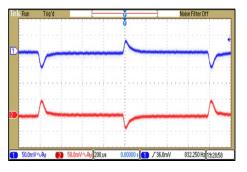

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

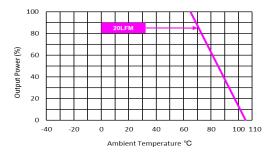

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-24D15 $\,$

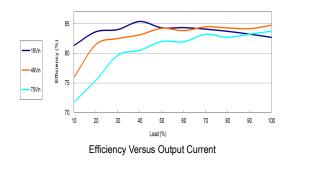


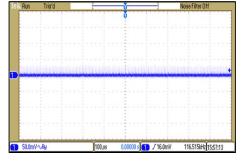

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

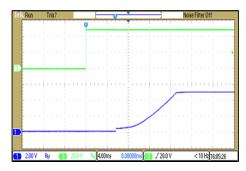

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

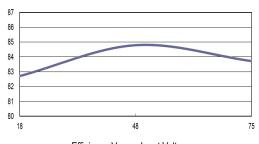
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

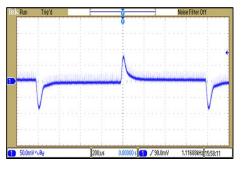


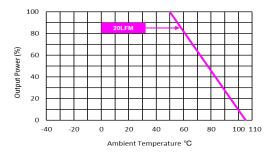

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-48S05

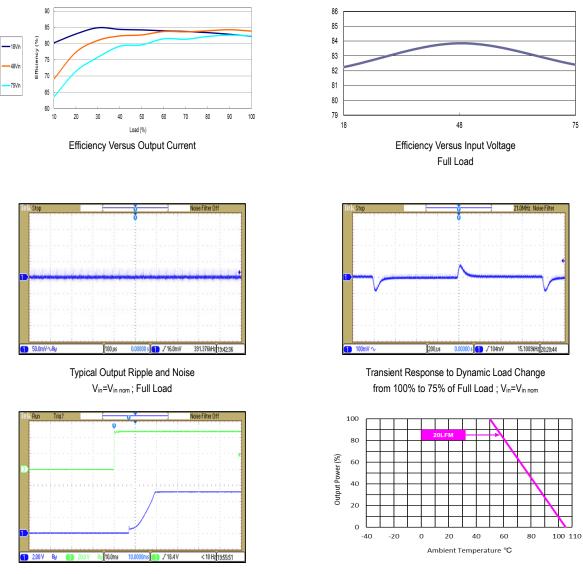



Typical Output Ripple and Noise Vin=Vin nom ; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

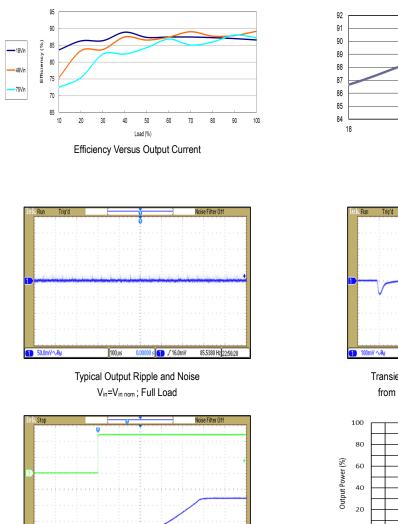


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-48S051 $\,$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

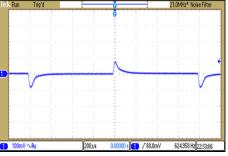

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

Date:2023-02-16 Rev:6

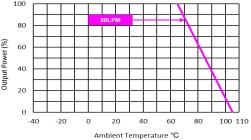
Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-48S12

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$


is 🚯 🖌 16.0 V

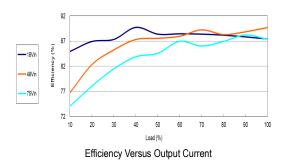
< 10 Hz 16:53:0

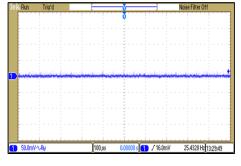

D 5.00 V By (€) 20.0 V By 4.00ms 8.0000

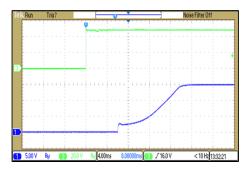
92 91 90 89 88 87 86 85 84 18 48 75

Efficiency Versus Input Voltage Full Load

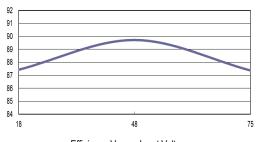
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

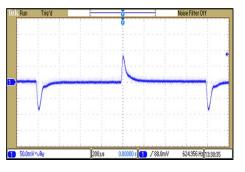

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

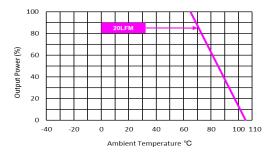

Date:2023-02-16 Rev:6


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-48S15

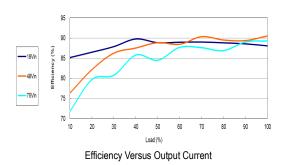


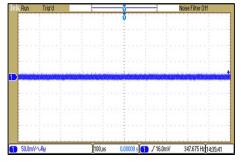

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

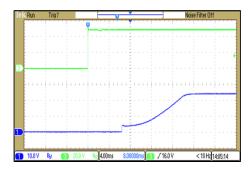

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

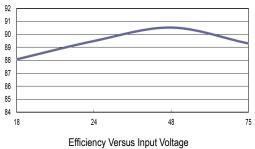
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

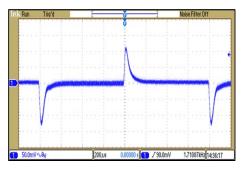


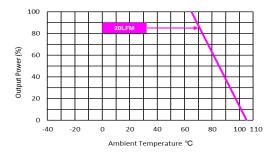

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI12-48S24

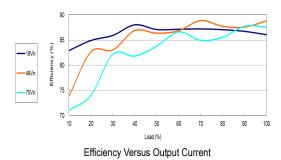


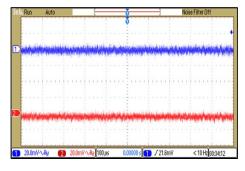

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

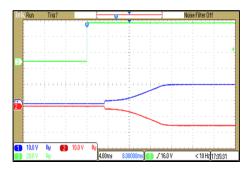

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Full Load

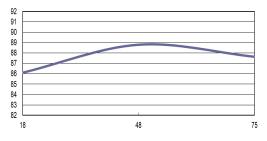
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

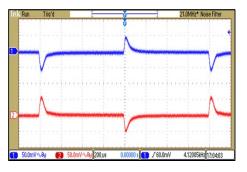


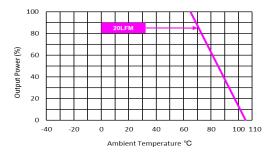

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-48D12 $\,$

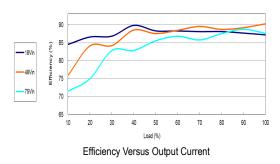


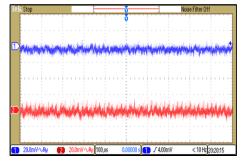

Typical Output Ripple and Noise Vin=Vin nom ; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Efficiency Versus Input Voltage Full Load

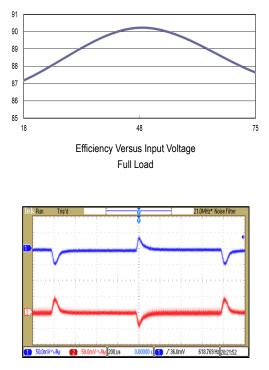
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}

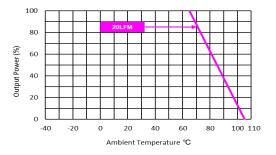

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$


Date:2023-02-16 Rev:6

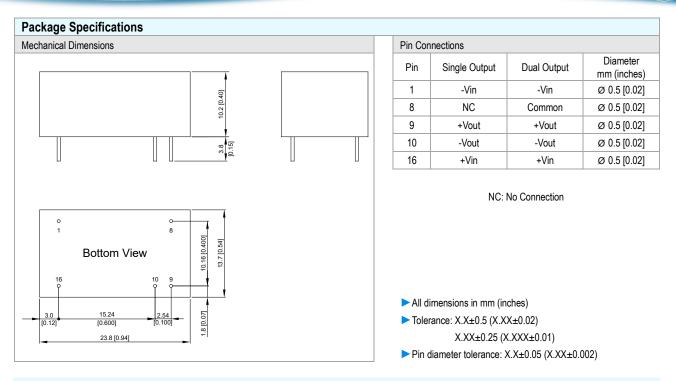
Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI12-48D15 $\,$

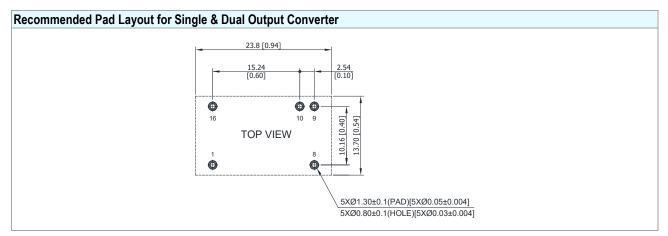



Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

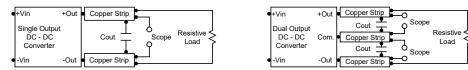


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in nom}}$


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

Physical Characteristics

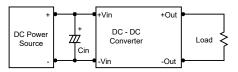
	Ion-Conductive Baseplate
Pin Material : Copper Alloy	
Weight : 8.6g	


Date:2023-02-16 Rev:6

Test Setup

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

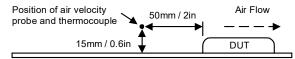
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2μ F for the 24V and 48V input devices, capacitor mounted close to the power module helps ensure stability of the unit.

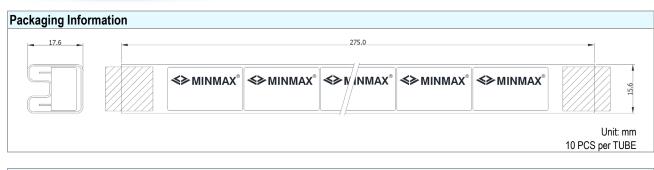
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 2.2µF capacitors at the output.

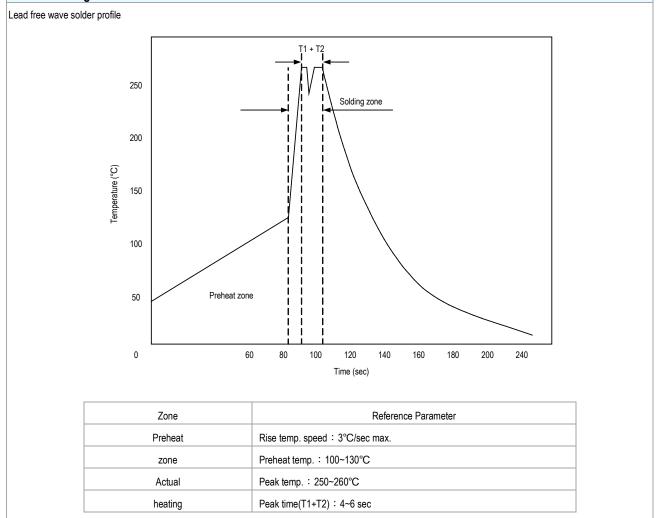


Maximum Capacitive Load

The MDWI12 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

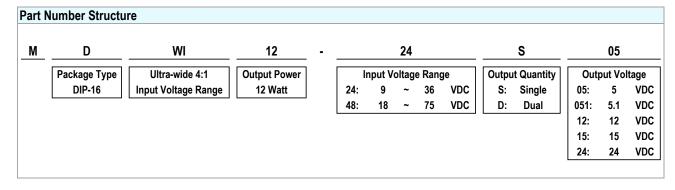


Date:2023-02-16 Rev:6

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag


Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2023-02-16 Rev:6

MTBF and Reliability

The MTBF of MDWI12 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MDWI12-24S05	2,335,063	
MDWI12-24S051	2,314,289	
MDWI12-24S12	3,843,983	
MDWI12-24S15	4,056,297	
MDWI12-24S24	4,272,998	
MDWI12-24D12	3,782,864	Hours
MDWI12-24D15	3,659,738	
MDWI12-48S05	2,343,559	
MDWI12-48S051	2,321,689	
MDWI12-48S12	3,853,501	
MDWI12-48S15	4,065,106	
MDWI12-48S24	4,282,774	
MDWI12-48D12	3,799,541	
MDWI12-48D15	3,676,431	

Date:2023-02-16 Rev:6