

MDWI06 Series EC Note

DC-DC CONVERTER 6W, Regulated Output, DIP Package

Features

- Smallest Encapsulated 6W Converter
- Industrial Standard DIP-16 Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1500 VDC
- Operating Temp. Range -40°C to +90°C
- Low No Load Power Consumption
- No Min. Load Requirement
- Under-voltage, Overload and Short Circuit Protection
- Shielded Metal Case with Insulated Baseplate
- Conducted EMI EN 55032 Class A Approved
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

As the smallest encapsulated 6 Watt industrial DC DC converter, MDWI06 series features low no load power consumption, fully regulated output voltage, and a shielded metal case with an insulated baseplate, able to provide up to 87% efficiency and instantaneous load capacity. In recent years, MDWI06 series 6 Watt DC-DC power converters are widely used in motion controllers, charging piles, and other industrial-grade applications. The MDWI06 series offers 7 output voltage options, including 3.3V, 5V, 12V, 15V, 24V, ±12V, and ±15V, providing a total of 14 selectable models. With a wide 4:1 input voltage range, it enhances versatility for various application scenarios. The MDWI06 features advanced circuit topology, regardless of changes in internal or external conditions, it maintains high stability in overall efficiency, power loss, and heat generation. The series supports a working temperature range from -40°C to +90°C.

For a more relieving experience, MINMAX DC DC converter manufacturer puts various safety guard functions for MDWI06 series such as under-voltage, overload, and short circuit protection. When it comes to certifications, it also has UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE marking so that you can rely on MINMAX products!

Table of contents

Model Selection Guide	. P2	Recommended Pad Layout for Single & Dual Output Converter	. P18
Input Specifications	. P2	Test Setup	. P19
Output Specifications	. P2	Technical Notes	. P19
General Specifications	. P2	Packaging Information for Tube	. P20
EMC Specifications	. P3	Wave Soldering Considerations	. P20
Environmental Specifications	. P3	Hand Welding Parameter	. P20
Characteristic Curves	. P4	Part Number Structure	. P21
Package Specifications	P18	MTBF and Reliability	. P21

Date:2024-06-24 Rev:6

MDWI06 Series - EC Notes 1

www.minmaxpower.com

Model Selection	Guide						
Model	Input	Output	Output	Inp	out	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Curr	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MDWI06-24S033		3.3	1500	264		680	78
MDWI06-24S05		5	1200	305		680	82
MDWI06-24S12	24	12	500	291		330	86
MDWI06-24S15	24	15	400	291	8	330	86
MDWI06-24S24	(9 ~ 36)	24	250	287		150	87
MDWI06-24D12		±12	±250	291		150#	86
MDWI06-24D15		±15	±200	287		150#	87
MDWI06-48S033		3.3	1500	132		680	78
MDWI06-48S05		5	1200	152		680	82
MDWI06-48S12		12	500	145		330	86
MDWI06-48S15	48	15	400	145	6	330	86
MDWI06-48S24	(18 ~ 75)	24	250	144		150	87
MDWI06-48D12	-	±12	±250	144		150#	87
MDWI06-48D15	-	±15	±200	144		150#	87

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
Start-Up Threshold Voltage	24V Input Models			9	VDC
	48V Input Models			18	VDC
Under Voltage Shutdown	24V Input Models		8		
	48V Input Models		16		
Input Filter	All Models		Internal	Рі Туре	

Output Specifications

Parameter	Conditions	Min.	Typ.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.2	±0.8	%
Load Regulation	lo=0% to 100%		±0.5	±1.0	%
Minimum Load	No min	imum Load Require	ment		
Ripple & Noise	0-20 MHz Bandwidth			55	mV _{P-P}
Transient Recovery Time	250/ Lood Oton Channel			500	µsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Ніссир		150		%
Short Circuit Protection	Hiccup Mode (0.5 Hz typ., Automa	tic Recovery		

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
VO laslation Valtana	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		500		pF
Switching Frequency			370		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,951,470			Hours
	UL/cUL 60950-1 recognition(U	IL certificate), IEC	/EN 60950-1(C	B-report)	
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate	IL certificate), IEC	/EN 62368-1(C	B-report)	

Date:2024-06-24 Rev:6

EMC Specifications				
Parameter		Standards & Level		Performance
	Conduction	EN 55032	Without external components	Class A
EMI(5)	Radiation	EN 55032	With external components	Class A
	EN 55035			
	ESD	EN 61000-4-2 Air ± 8k	V, Contact ± 6kV	A
	Radiated immunity	EN 61000-4-3	3 20V/m	A
EMS(5)	Fast transient	EN 61000-4-	4 ±2kV	A
	Surge	EN 61000-4-	5 ±1kV	A
	Conducted immunity	EN 61000-4-6	10Vrms	A
	PFMF	EN 61000-4-8 100A/m	, 1000A/m(1sec.)	A

Environmental Specifications

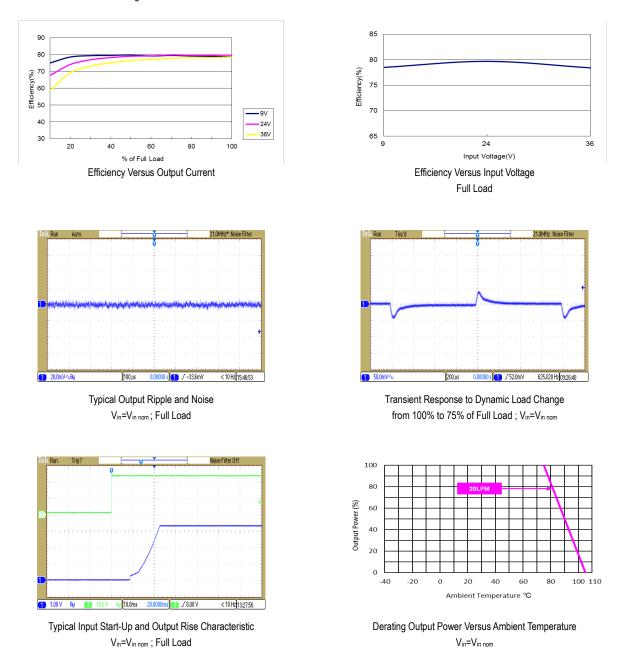
Min. -40	Max. +90	Unit
-40	.00	
	+90	C°
	+105	°C
-50	+125	°C
	95	% rel. H
	260	°C
-	-50	-50 +125 95

Notes

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.

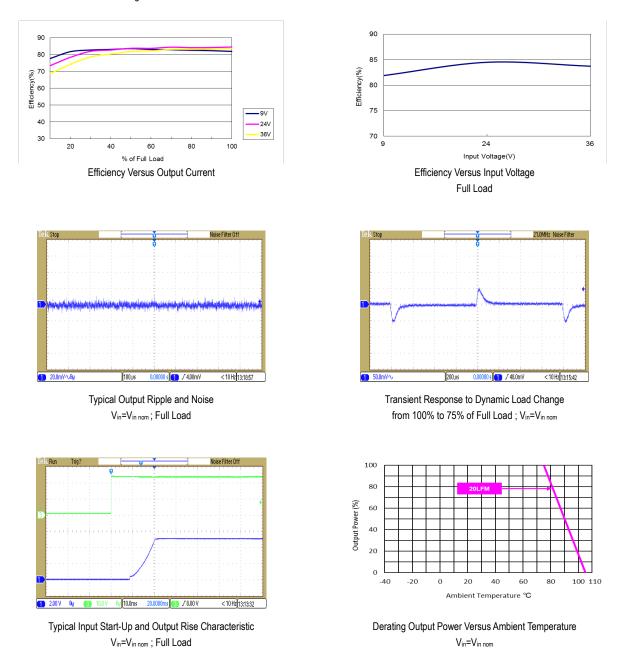
5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.


- 6 Specifications are subject to change without notice.
- 7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-06-24 Rev:6

Characteristic Curves

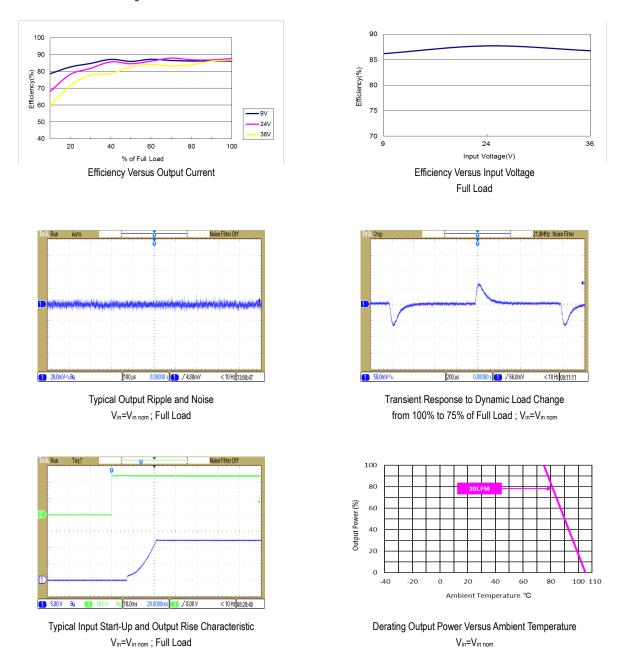
All test conditions are at 25°C $\,$ The figures are identical for MDWI06-24S033 $\,$



Date:2024-06-24 Rev:6

Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI06-24S05



Date:2024-06-24 Rev:6

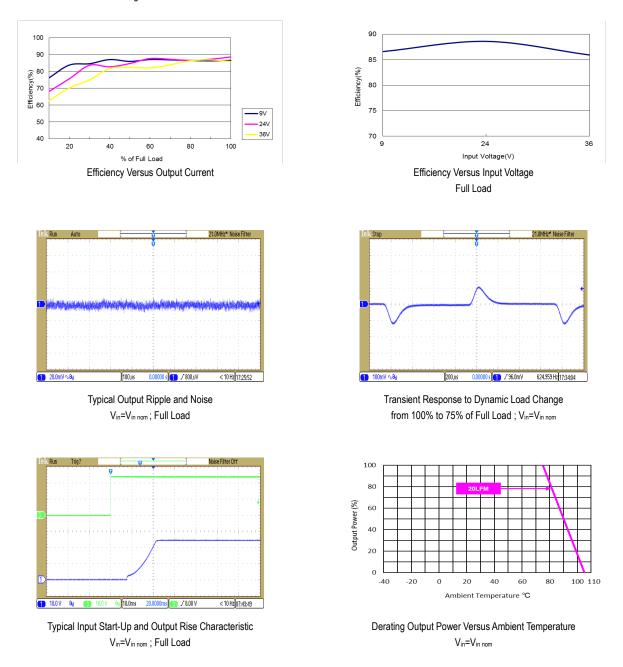
Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI06-24S12

Date:2024-06-24 Rev:6

Characteristic Curves

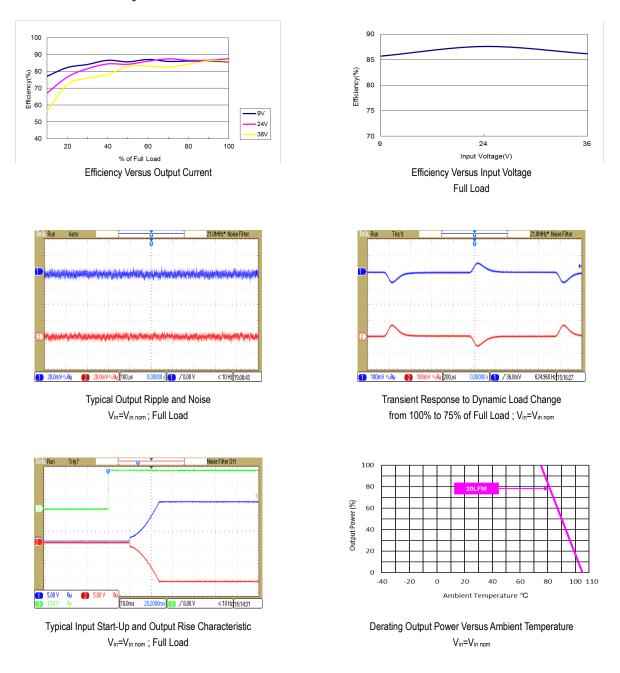
All test conditions are at 25°C The figures are identical for MDWI06-24S15



Date:2024-06-24 Rev:6

Characteristic Curves

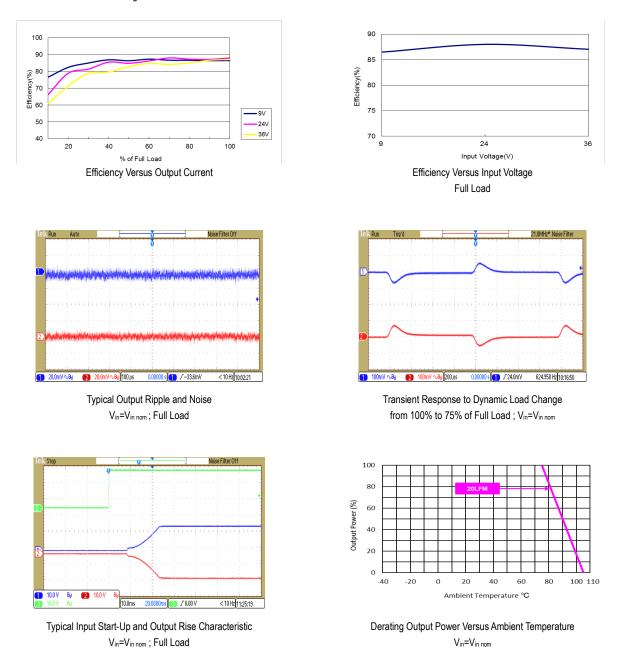
All test conditions are at 25°C $\,$ The figures are identical for MDWI06-24S24 $\,$



Date:2024-06-24 Rev:6

Characteristic Curves

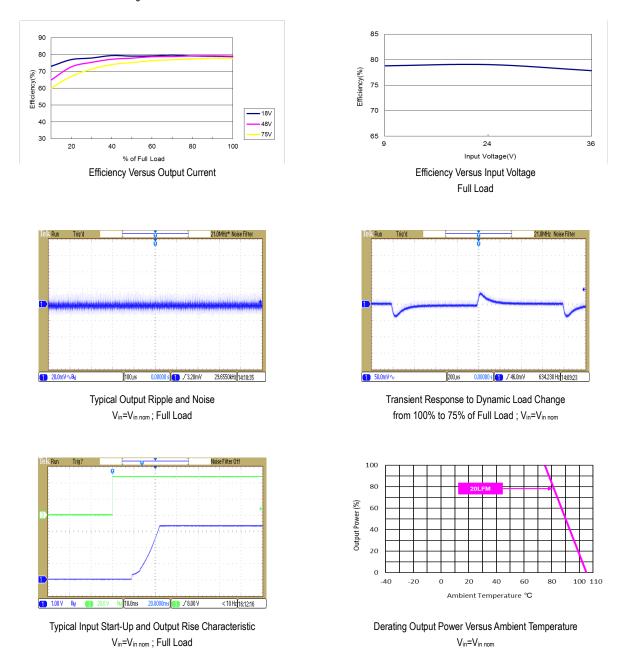
All test conditions are at 25°C $\,$ The figures are identical for MDWI06-24D12 $\,$



Date:2024-06-24 Rev:6

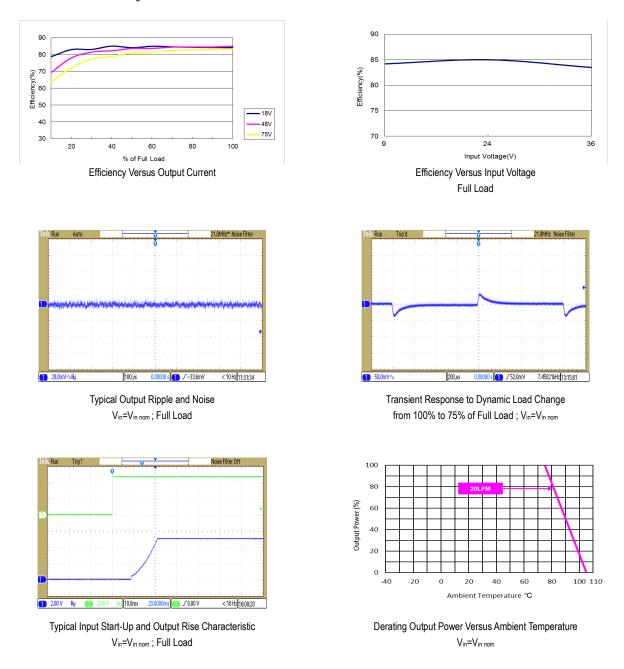
Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI06-24D15



Characteristic Curves

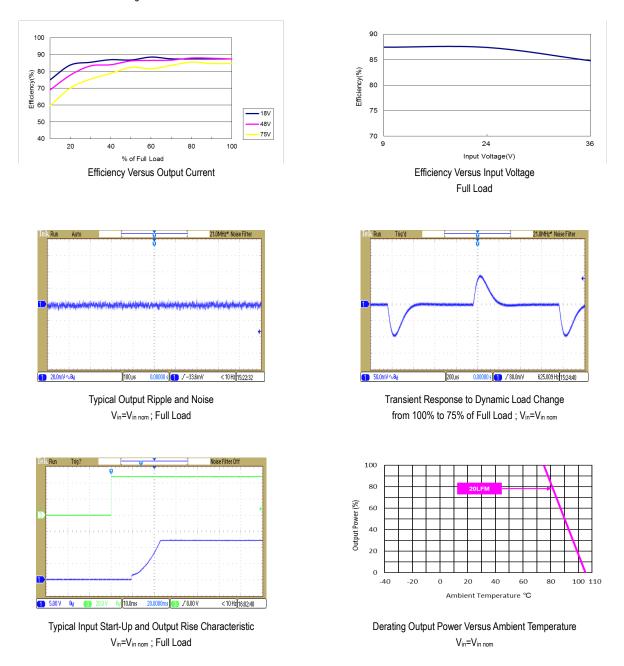
All test conditions are at 25°C $\,$ The figures are identical for MDWI06-48S033 $\,$



Date:2024-06-24 Rev:6

Characteristic Curves

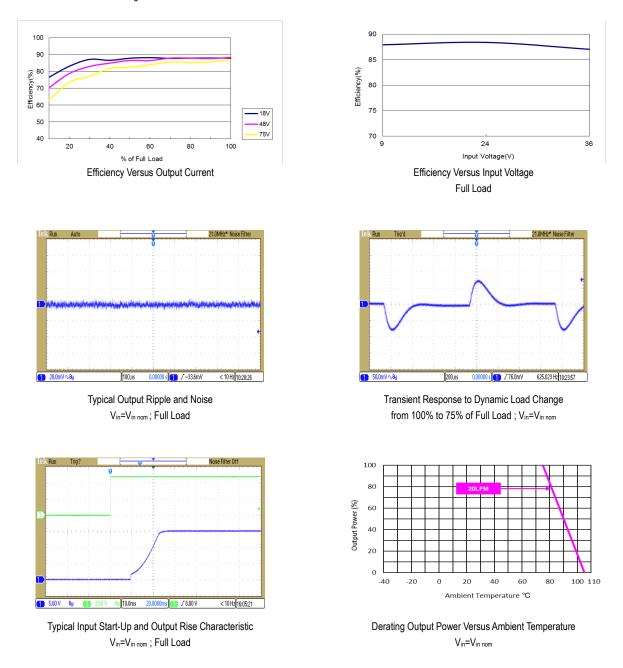
All test conditions are at 25°C The figures are identical for MDWI06-48S05



Date:2024-06-24 Rev:6

Characteristic Curves

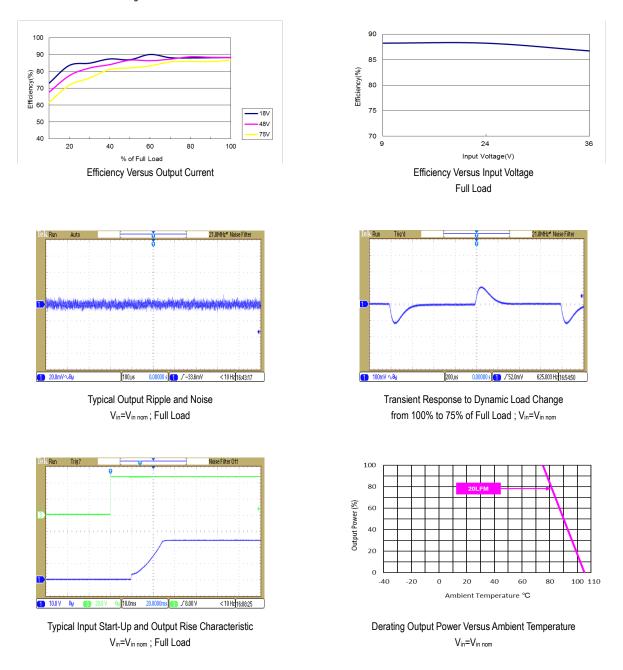
All test conditions are at 25°C The figures are identical for MDWI06-48S12



Date:2024-06-24 Rev:6

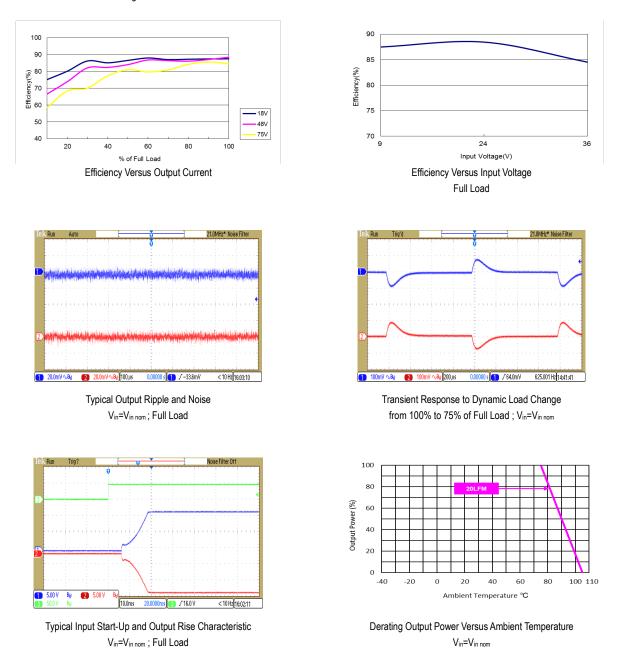
Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI06-48S15



Characteristic Curves

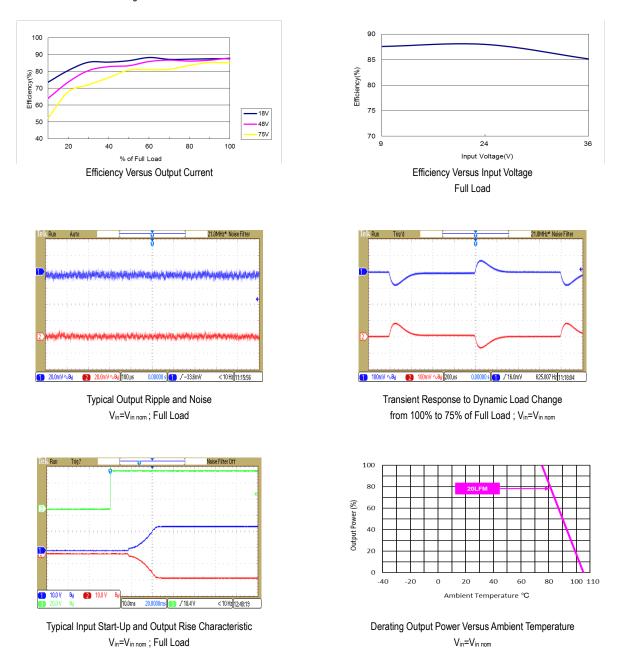
All test conditions are at 25°C The figures are identical for MDWI06-48S24



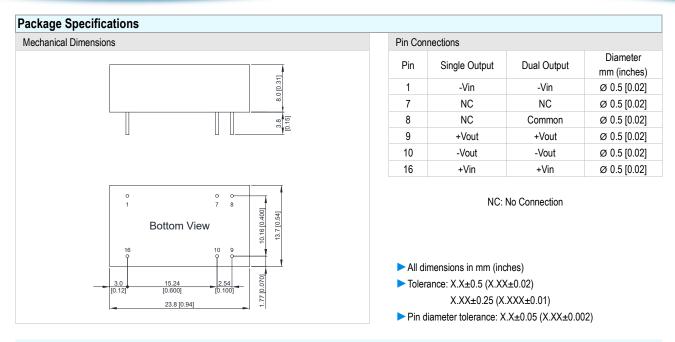
Date:2024-06-24 Rev:6

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MDWI06-48D12 $\,$

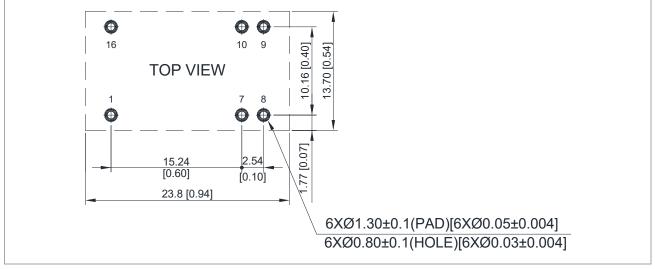


Date:2024-06-24 Rev:6


Characteristic Curves

All test conditions are at 25°C The figures are identical for MDWI06-48D15

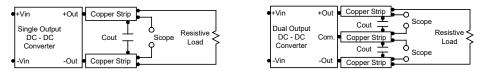
Date:2024-06-24 Rev:6



Physical Characteristics

Case Size	: 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)
Case Material	: Metal With Non-Conductive Baseplate
Pin Material	: Copper Alloy
Weight	: 6.1g

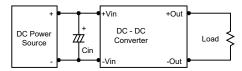
Recommended Pad Layout for Single & Dual Output Converter



Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

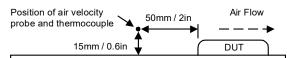
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for the 24V and 48V devices.

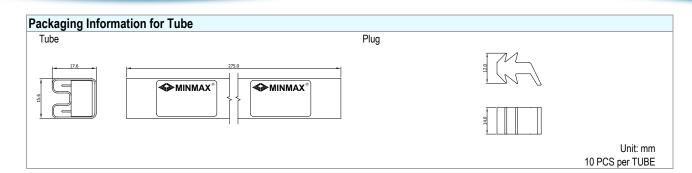
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

The MDWI06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

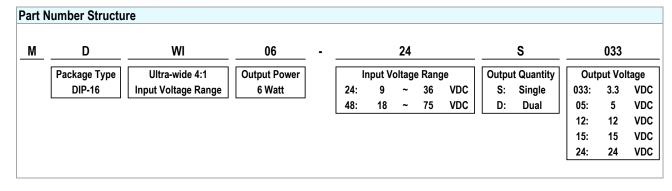
Date:2024-06-24 Rev:6

Wave Soldering Considerations

Lead free wave solder profile T1 + T2 250 Solding zone 200 Temperature (°C) 150 100 Preheat zone 50 0 60 80 100 120 140 160 200 240 180 Time (sec) Reference Parameter Zone Rise temp. speed : 3°C/sec max. Preheat Preheat temp. : 100~130°C zone Peak temp. : 250~260°C Actual heating Peak time(T1+T2) : 4~6 sec

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag


Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2024-06-24 Rev:6

MTBF and Reliability

The MTBF of MDWI06 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MDWI06-24S033	2,951,470	
MDWI06-24S05	3,164,769	
MDWI06-24S12	3,909,480	
MDWI06-24S15	3,970,895	
MDWI06-24S24	4,001,781	
MDWI06-24D12	3,942,464	
MDWI06-24D15	3,983,672	llouro
MDWI06-48S033	2,985,768	Hours
MDWI06-48S05	2,962,992	
MDWI06-48S12	3,891,601	
MDWI06-48S15	3,990,556	
MDWI06-48S24	4,066,911	
MDWI06-48D12	4,066,208	
MDWI06-48D15	3,925,541	

Date:2024-06-24 Rev:6