

MDW08 Series EC Note

DC-DC CONVERTER 8W, Regulated Output, DIP Package

Features

- ► Smallest Encapsulated 8W Converter
- Industrial Standard DIP-16 Package
- ► Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ➤ Operating Ambient Temp. Range -40°C to +80°C
- ► Low No Load Power Consumption
- No Min. Load Requirement
- ► Under-voltage, Overload and Short Circuit Protection
- ► Shielded Metal Case with Insulated Baseplate
- Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ▶ Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MDW08 series is an industrial-grade 8W isolated DC-DC power converter designed in the international standard DIP-16 package. Through continuous efforts by MINMAX, the MDW08 series has successfully reduced its volume by 75% and lightened its weight by 79% compared to the previous generation, achieving a power density of up to 50W/in3. This advancement assists equipment manufacturers dealing with limited design space in solving critical application challenges. With a 2:1 wide input voltage range, it is suitable for various application scenarios, offering 21 output voltage models including 3.3V, 5V, 12V, 15V, 24V, ±12V, and ±15V. The fully regulated output ensures stable and reliable long-term operation.

The MDW08 series stands out not only for its compact design but also for its features such as a 1500VDC isolation voltage, a broad operating temperature range from -40°C to +80°C, making it suitable for diverse climates and industrial environments. Excellent electrical characteristics are maintained in the miniaturization of the MDW08 series, with low standby power con sumption, no minimum load requirement, high conversion efficiency, and outstanding transient load capability. Additionally, the series includes multiple protection mechanisms, such as input undervoltage, output overcurrent, and output short-circuit protection, ensuring safe operation under various conditions.

To further enhance performance, the MDW08 series adopts a shielded metal enclosure and insulated substrate, incorporating a conductive electromagnetic interference (EMI) filtering circuit. It has obtained EN55032 Class A certification, effectively suppressing noise and interference. The MDW08 series finds extensive applications in semiconductor processing equipment, power supplies, intelligent inspection robots, charging stations, motion controllers, power regulators, energy storage systems, among other fields. It has rapidly become one of MINMAX's popular product series, boasting high repurchase rates and customer satisfaction.

The MDW08 series is certified under international standards UL/cUL/IEC/EN 62368-1, and bears the CE mark. Whether in industrial automation, communication equipment, or other application domains, the MDW08 series is an ideal choice, providing a reliable and compliant power solution for your systems.

Table of contents

Model Selection GuideP2	Recommended Pad Layout for Single & Dual Output Converter
Input SpecificationsP2	Test SetupP26
Output SpecificationsP2	Technical Notes
General SpecificationsP3	Packaging Information for TubeP27
EMC SpecificationsP3	Wave Soldering ConsiderationsP27
Environmental SpecificationsP3	Hand Welding ParameterP27
Characteristic Curves	Part Number StructureP28
Package SpecificationsP25	MTBF and ReliabilityP28

Date: 2024-06-24 Rev: 7

MDW08 Series - EC Notes

Model Selection	n Guide							
Model	Input	Output	Output	Inp	Input		Efficiency	
Number	Voltage	Voltage	Current	Cur	Current		(typ.)	
	(Range)		Max.	@Max. Load	@No Load		@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%	
MDW08-12S033		3.3	1600	564		680	78	
MDW08-12S05		5	1600	823		680	81	
MDW08-12S12	40	12	665	792		330	84	
MDW08-12S15	12	15	535	796	10	330	84	
MDW08-12S24	(9 ~ 18)	24	335	788		150	85	
MDW08-12D12		±12	±335	788			150#	85
MDW08-12D15		±15	±265	789		150#	84	
MDW08-24S033		3.3	1600	282		680	78	
MDW08-24S05		5	1600	407		680	82	
MDW08-24S12	0.4	12	665	391		330	85	
MDW08-24S15	24	15	535	393	10	330	85	
MDW08-24S24	(18 ~ 36)	24	335	390		150	86	
MDW08-24D12		±12	±335	394		150#	85	
MDW08-24D15		±15	±265	385		150#	86	
MDW08-48S033		3.3	1600	141		680	78	
MDW08-48S05		5	1600	206		680	81	
MDW08-48S12		12	665	196		330	85	
MDW08-48S15	48	15	535	197	8	330	85	
MDW08-48S24	(36 ~ 75)	24	335	195		150	86	
MDW08-48D12		±12	±335	195		150#	86	
MDW08-48D15		±15	±265	193		150#	86	

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models		8		
Under Voltage Shutdown	24V Input Models		16		
	48V Input Models		34		
Input Filter	All Models		Internal Pi Type		

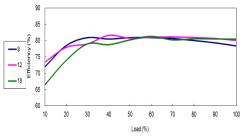
Parameter	Conditions	Min.	Typ.	Max.	Unit
Farameter	Conditions	IVIII1.	Typ.	IVIAX.	Ullit
Output Voltage Setting Accuracy				±2.0	%Vom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.2	±0.8	%
Load Regulation	lo=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20 MHz Bandwidth			55	mV _{P-P}
Transient Recovery Time	05% Lead Ober Oberes			500	µsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Hiccup		150		%
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)				

Date:2024-06-24 Rev:7 MDW08 Series – EC Notes 2

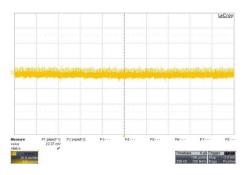
General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
NO la alatia a Malta na	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		500		pF
Switching Frequency			370		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,062,864			Hours
O-fate Assessed	UL/cUL 60950-1 recognition (U	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report)			
Safety Approvals	UL/cUL 62368-1 recognition (U	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)			

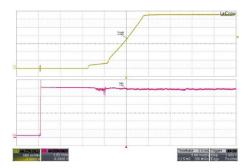
EMC Specifications						
Parameter		Standards & Level Performa				
EMI	Conduction	Conduction		Class A		
EMI ₍₅₎	Radiation	EN 55032	With external components	Class A		
	EN 55035					
	ESD	EN 61000-4-2 Air \pm 8kV , Contact \pm 6kV		Α		
	Radiated immunity	EN 61000-4-3 20V/m		Α		
EMS(5)	Fast transient	EN 61000-4-4 ±2kV		Α		
	Surge	EN 61000-4-5 ±1kV		Α		
	Conducted immunity	EN 61000-4-6 10Vrms		А		
	PFMF	EN 61000-4-8 100A/m		Α		

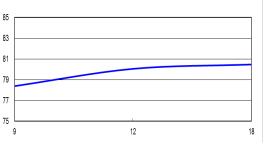
Environmental Specifications				
Parameter	Min.	Max.	Unit	
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+80	°C	
Case Temperature		+105	°C	
Storage Temperature Range	-50	+125	°C	
Humidity (non condensing)		95	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)		260	°C	

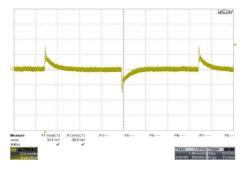

Notes

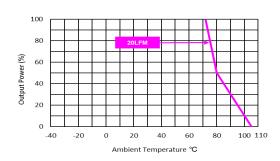
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Date: 2024-06-24 Rev: 7 MDW08 Series – EC Notes 3

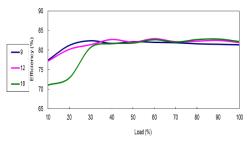

All test conditions are at 25°C The figures are identical for MDW08-12S033

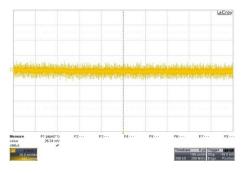

Efficiency Versus Output Current

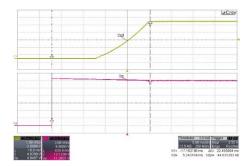

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

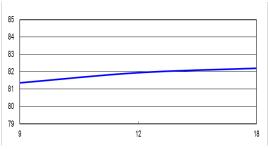

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

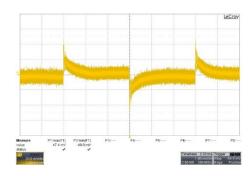
Efficiency Versus Input Voltage Full Load

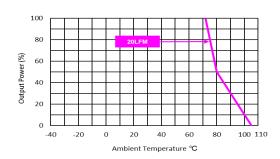

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

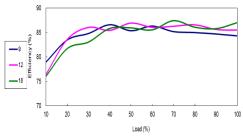

All test conditions are at 25°C $\,$ The figures are identical for MDW08-12S05 $\,$

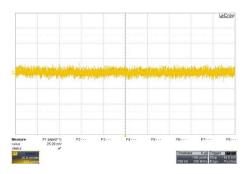

Efficiency Versus Output Current

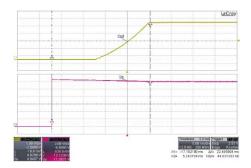

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

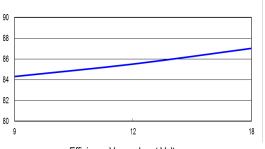

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

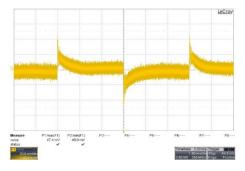
Efficiency Versus Input Voltage Full Load

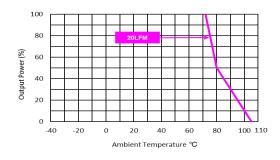

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

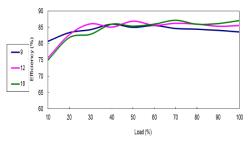

All test conditions are at 25°C The figures are identical for MDW08-12S12

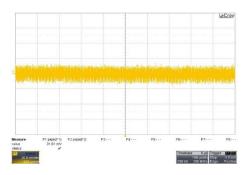

Efficiency Versus Output Current

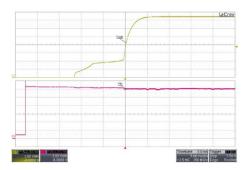

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

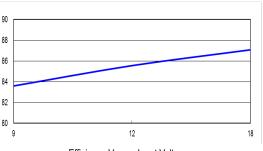

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

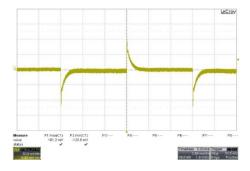
Efficiency Versus Input Voltage Full Load

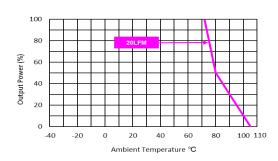

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

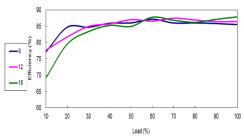

All test conditions are at 25°C $\,$ The figures are identical for MDW08-12S15 $\,$

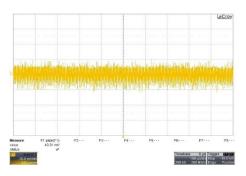

Efficiency Versus Output Current

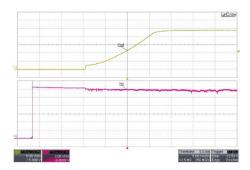

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

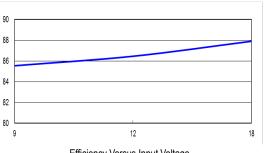

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

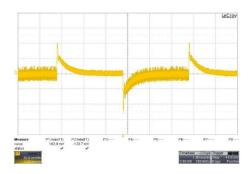
Efficiency Versus Input Voltage Full Load

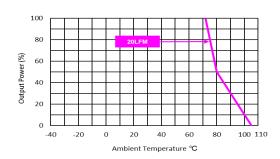

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

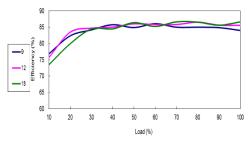

All test conditions are at 25°C The figures are identical for MDW08-12S24

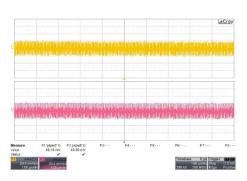

Efficiency Versus Output Current

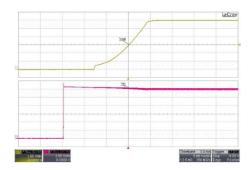

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

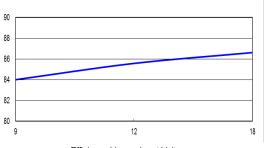

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

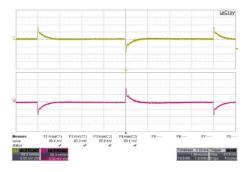
Efficiency Versus Input Voltage Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

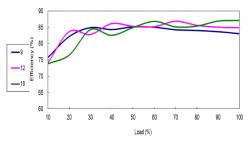

All test conditions are at 25°C The figures are identical for MDW08-12D12

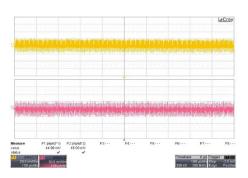

Efficiency Versus Output Current

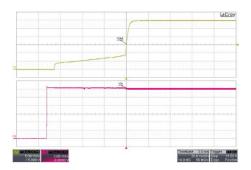

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

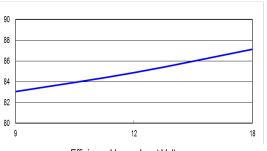

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

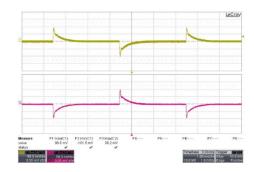
Efficiency Versus Input Voltage Full Load

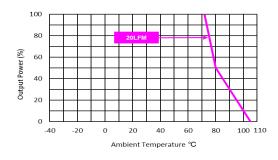

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

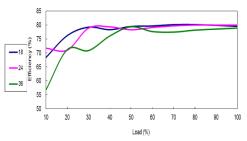

All test conditions are at 25°C The figures are identical for MDW08-12D15

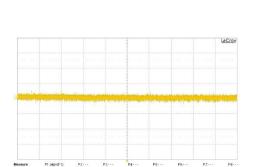

Efficiency Versus Output Current

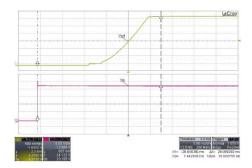

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

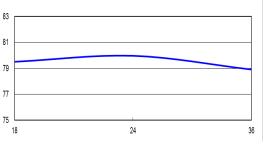

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

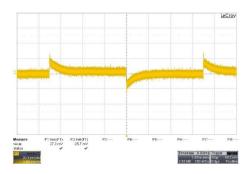
Efficiency Versus Input Voltage Full Load

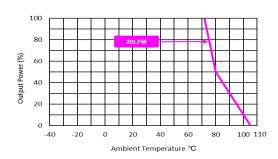

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

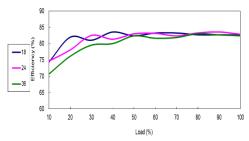

All test conditions are at 25°C The figures are identical for MDW08-24S033

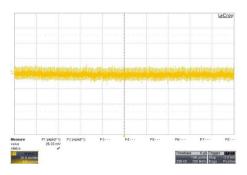

Efficiency Versus Output Current

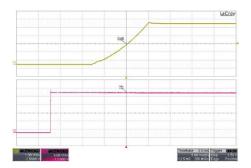

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

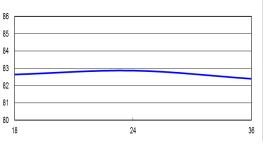

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

Efficiency Versus Input Voltage Full Load

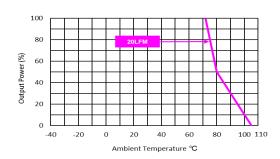

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

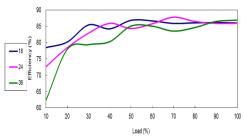

All test conditions are at 25°C $\,$ The figures are identical for MDW08-24S05 $\,$

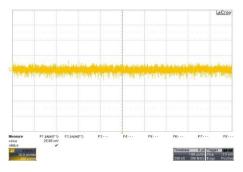

Efficiency Versus Output Current

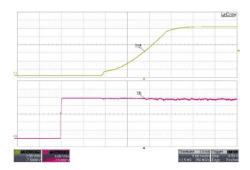
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

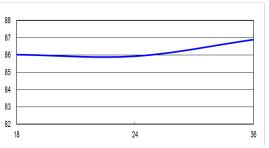

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

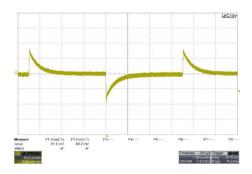
Efficiency Versus Input Voltage Full Load

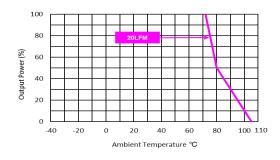

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

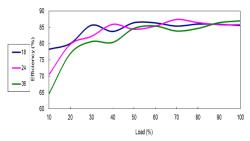

All test conditions are at 25°C The figures are identical for MDW08-24S12

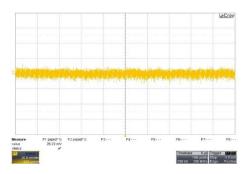

Efficiency Versus Output Current

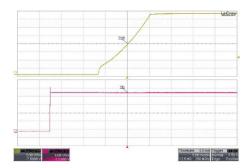

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

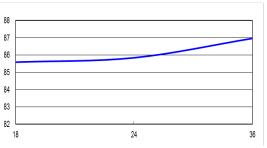

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

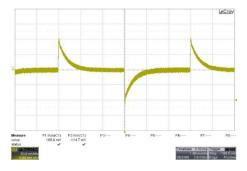
Efficiency Versus Input Voltage Full Load

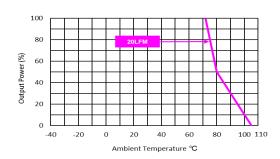

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

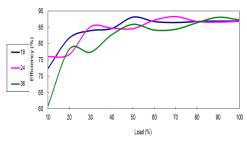

All test conditions are at 25°C $\,$ The figures are identical for MDW08-24S15 $\,$

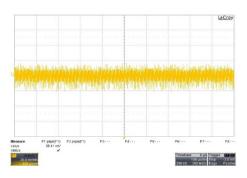

Efficiency Versus Output Current

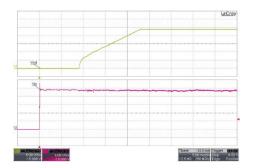

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

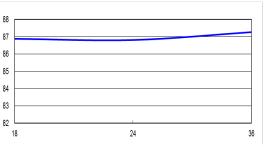

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

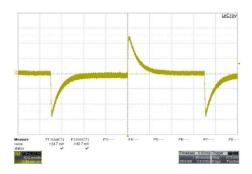
Efficiency Versus Input Voltage Full Load

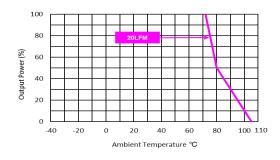

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

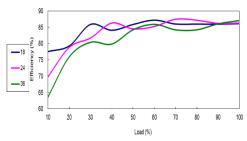

All test conditions are at 25°C The figures are identical for MDW08-24S24

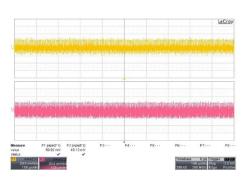

Efficiency Versus Output Current

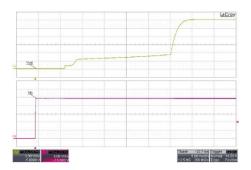

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

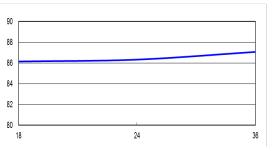

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

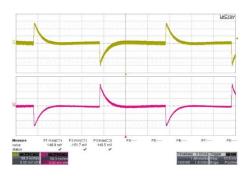
Efficiency Versus Input Voltage Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$


Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

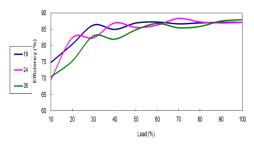

All test conditions are at 25°C The figures are identical for MDW08-24D12


Efficiency Versus Output Current

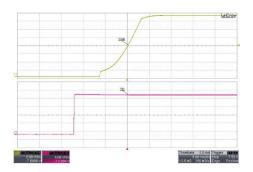

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

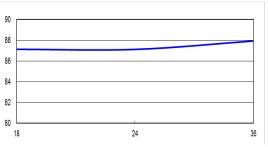

Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

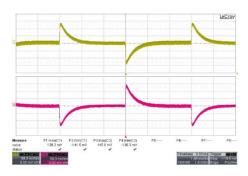
Efficiency Versus Input Voltage Full Load

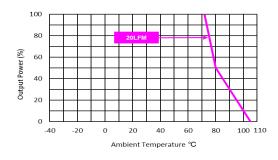

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

Derating Output Power Versus Ambient Temperature V_{in}=V_{in nom}

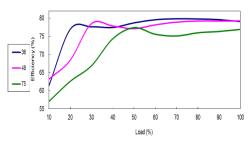

All test conditions are at 25°C The figures are identical for MDW08-24D15

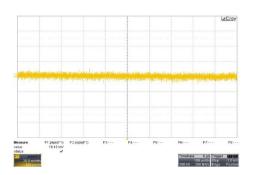

Efficiency Versus Output Current

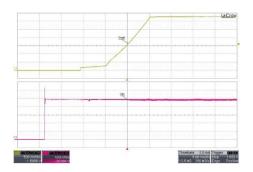

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

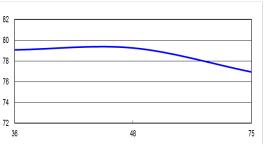

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

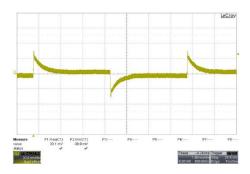
Efficiency Versus Input Voltage Full Load

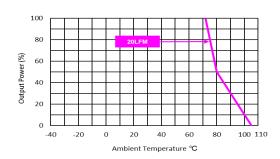

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

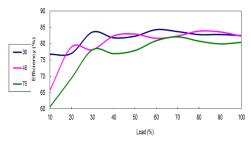

All test conditions are at 25°C The figures are identical for MDW08-48S033

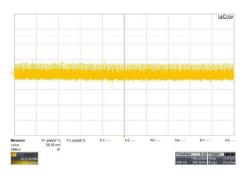

Efficiency Versus Output Current

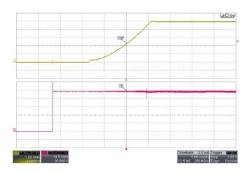

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

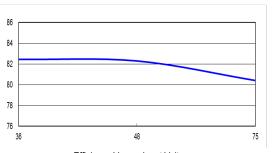

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

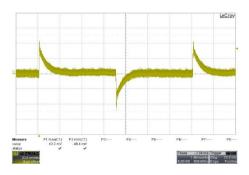
Efficiency Versus Input Voltage Full Load

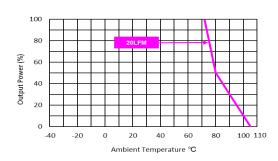

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

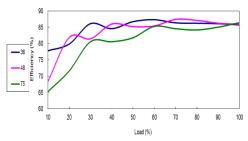

All test conditions are at 25°C $\,$ The figures are identical for MDW08-48S05 $\,$

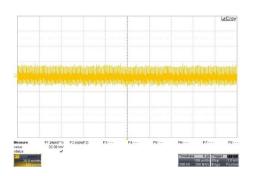

Efficiency Versus Output Current

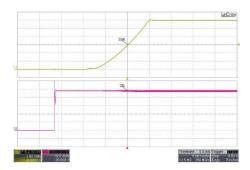

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

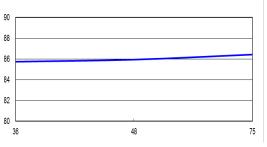

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

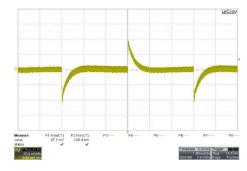
Efficiency Versus Input Voltage Full Load

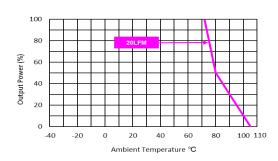

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

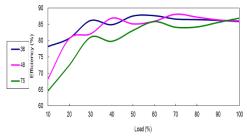

All test conditions are at 25°C The figures are identical for MDW08-48S12

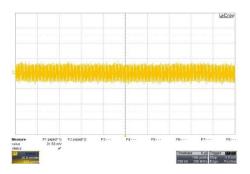

Efficiency Versus Output Current

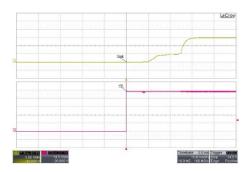

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

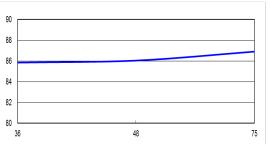

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

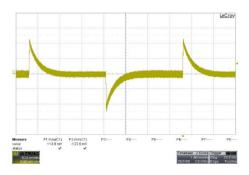
Efficiency Versus Input Voltage Full Load

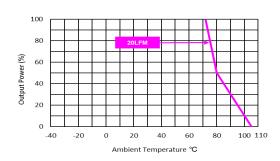

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

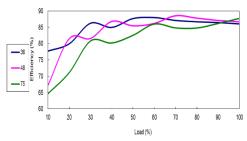

All test conditions are at 25°C $\,$ The figures are identical for MDW08-48S15 $\,$

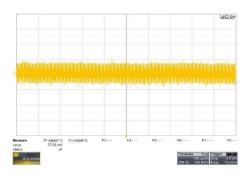

Efficiency Versus Output Current

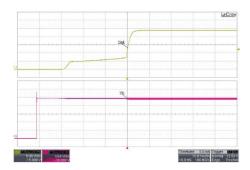

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

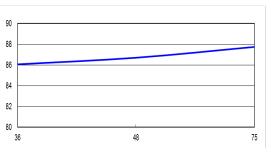

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

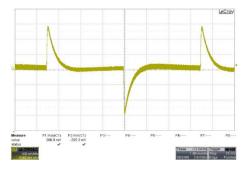
Efficiency Versus Input Voltage Full Load

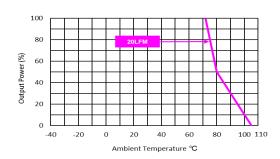

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

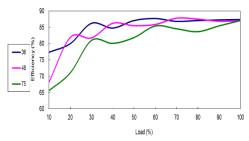

All test conditions are at 25°C The figures are identical for MDW08-48S24

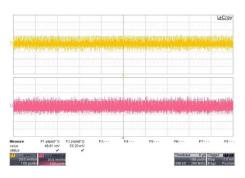

Efficiency Versus Output Current

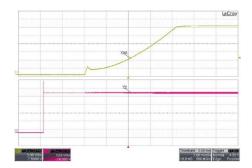

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

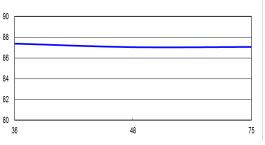

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

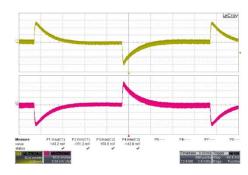
Efficiency Versus Input Voltage Full Load

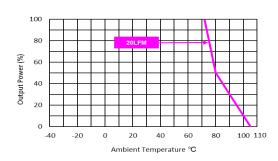

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

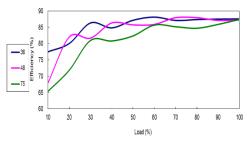

All test conditions are at 25°C The figures are identical for MDW08-48D12

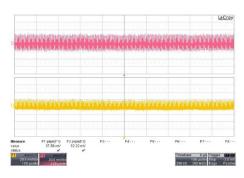

Efficiency Versus Output Current

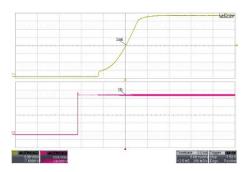

Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

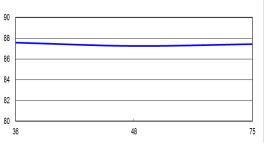

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

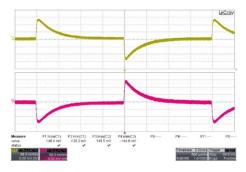
Efficiency Versus Input Voltage Full Load

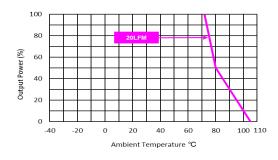

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MDW08-48D15


Efficiency Versus Output Current


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load}$

Efficiency Versus Input Voltage Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Pin Con	Pin Connections				
Pin	Single Output	Dual Output	Diameter mm (inches)		
1	-Vin	-Vin	Ø 0.5 [0.02]		
7	NC	NC	Ø 0.5 [0.02]		
8	NC	Common	Ø 0.5 [0.02]		
9	+Vout	+Vout	Ø 0.5 [0.02]		
10	-Vout	-Vout	Ø 0.5 [0.02]		
16	+Vin	+Vin	Ø 0.5 [0.02]		

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

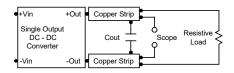
X.XX±0.25 (X.XXX±0.01)

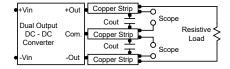
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)
Case Material : Metal With Non-Conductive Baseplate

Pin Material : Copper Alloy Weight : 6.1g

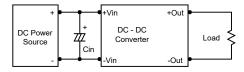

Recommended Pad Layout for Single & Dual Output Converter • $\oplus \ \oplus$ 10 9 16 10.16 [0.40] **TOP VIEW** 0 • • [77 [0.07] 15.24 [0.60] 2.54 [0.10] 23.8 [0.94] 6XØ1.30±0.1(PAD)[6XØ0.05±0.004] 6XØ0.80±0.1(HOLE)[6XØ0.03±0.004]



Test Setup

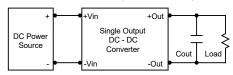
Peak-to-Peak Output Noise Measurement Test

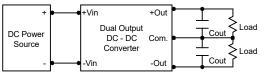
Use a Cout $0.47 \mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

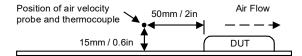
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance

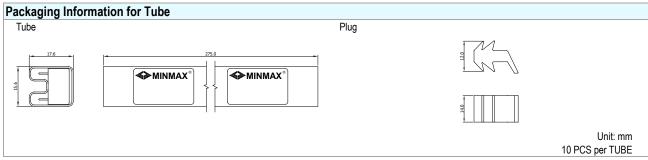

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $3.3\mu\text{F}$ for the 12V input devices and a $2.2\mu\text{F}$ for the 24V and 48V devices.

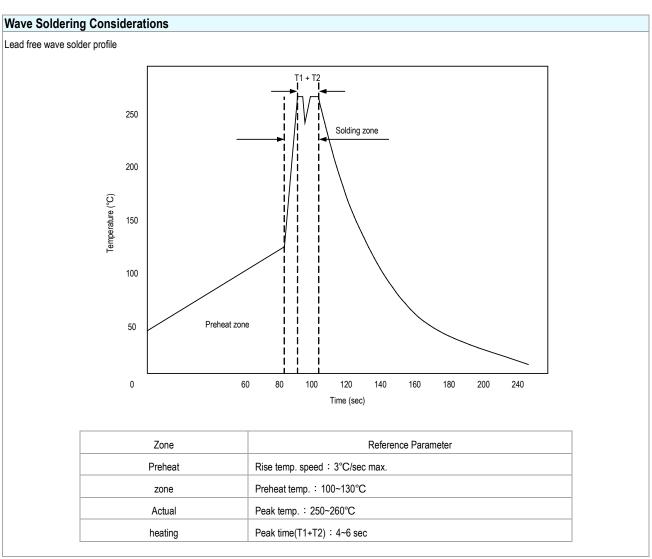
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.



Maximum Capacitive Load


The MDW08 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure M D W 08 12 S 033 Output Power Wide 2:1 Output Quantity Package Type Input Voltage Range Output Voltage DIP-16 Input Voltage Range 8 Watt VDC 12: 9 18 VDC S: Single 033: 3.3 VDC 24: 18 36 VDC D: Dual 05: 5 75 VDC 12: 12 VDC 48: 15: 15 VDC 24: 24 VDC

MTBF and Reliability

The MTBF of MDW08 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MDW08-12S033	2,978,998	
MDW08-12S05	2,086,679	
MDW08-12S12	2,934,195	
MDW08-12S15	2,917,639	
MDW08-12S24	3,079,766	
MDW08-12D12	3,017,274	
MDW08-12D15	2,911,573	
MDW08-24S033	2,982,206	
MDW08-24S05	2,103,958	
MDW08-24S12	3,104,663	
MDW08-24S15	3,026,233	Hours
MDW08-24S24	3,213,210	
MDW08-24D12	3,151,681	
MDW08-24D15	3,123,088	
MDW08-48S033	2,861,835	
MDW08-48S05	2,109,995	
MDW08-48S12	3,280,703	
MDW08-48S15	3,221,562	
MDW08-48S24	3,424,041	
MDW08-48D12	3,289,403	
MDW08-48D15	3,281,566	