

MCWI04 Series

DC-DC CONVERTER 4W, SIP-Package

Features

- ► Compact SIP-8 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1600 VDC
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► No Min. Load Requirement
- Overload and Short Circuit Protection
- ► Remote On/Off Control
- ► UL/cUL/IEC/EN 62368-1 Safety Approval, CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- Computer equipment
- ➤ Communications equipment

Electric Characteristic Note

Product Overview

The MINMAX MCWI04 series is a range of isolated 4W DC-DC converter modules featuring fully regulated output voltages and ultra-wide 4:1 input voltage ranges. The converters come in a very small SIP-8 package which occupies only 2.0 cm2 of PCB space. An excellent efficiency allows operating temperatures up to +85°C. Further features include remote ON/OFF, overload, and short circuit protection. The very compact dimensions of these DC-DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Table of contents

Model Selection Guide	P2
Input Specifications	P2
Remote On/Off Specifications	P2
Output Specifications	P3
General Specifications	P3
EMC Specifications	P3
Environmental Specifications	P3
Characteristic Curves	P4
Package Specifications	P16

Recommended Pad Layout for Single & Dual Output Converter	P16
Test Setup	P17
Technical Notes	P17
Remote On/Off Implementation	P18
Packaging Information	P18
Wave Soldering Considerations	P19
Part Number Structure	P20
MTBF and Reliability	P20

Electric Characteristic Note

Model Selecti	ion Guide							
Model Number	Input Voltage	Output Voltage	Output Power	Output Current	Input (Current	Max. capacitive Load	Efficiency (typ.)
	(Range)			Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	W	mA	mA(typ.)	mA(typ.)	μF	%
MCWI04-24S05		5	4	800	211		1800	79
MCWI04-24S12		12	4	333	201		1000	83
MCWI04-24S15	24	15	3.99	266	200	00	820	83
MCWI04-24S24	(9 ~ 36)	24	3.98	166	200	20	470	83
MCWI04-24D12		±12	3.98	±166	200		560#	83
MCWI04-24D15		±15	3.99	±133	200		390#	83
MCWI04-48S05		5	4	800	107		1800	78
MCWI04-48S12		12	4	333	102		1000	82
MCWI04-48S15	48	15	3.99	266	101	1	820	82
MCWI04-48S24	(18 ~ 75)	24	3.98	166	101	10	470	82
MCWI04-48D12		±12	3.98	±166	101	1	560#	82
MCWI04-48D15		±15	3.99	±133	101	1	390#	82

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Innut Curre Veltage (4 and man)	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	VDC
Object the Three should Nelle and	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	
Start-Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		ms
Input Filter	All Models		Internal	Capacitor	

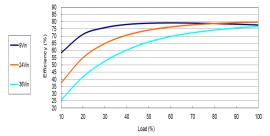
Remote On/Off Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	Under 0.6 VDC o	or Open Circuit			
Converter Off	6 to 15	SVDC			
Standby Input Current	Nominal Vin		2.5		mA

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±1.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads			±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load			±0.5	%
Load Regulation	Io=0% to 100%			±1.0	%
Load Cross Regulation (Dual Output)	Asymmetrical Load 25/100% Full Load			±5.0	%
Minimum Load	No minimum Lo	oad Requiremen	t		
Ripple & Noise	0-20 MHz Bandwidth			80	mV _{P-P}
Transient Recovery Time	050/ Lead Olea Oleana		250		μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient				±0.02	%/°C
Over Load Protection	Foldback		160		%
Short Circuit Protection	Continuous, Au	tomatic Recover	y		

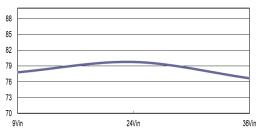
www.minmax.com.tw Rev:0 2020/09/02 Page 2 of 20

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O loolotion Voltage	60 Seconds	1600			VDC
I/O Isolation Voltage	1 Second	1920			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		200		pF
Switching Frequency	PFM Mode	100			kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,859,569			Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL certification)	ate), IEC/EN 6236	8-1 & 60950-1	(CB report)	

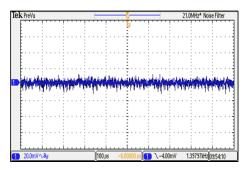
EMC Specifications				
Parameter		Standards & Level		
EMI	Conduction	EN 55032	With outernal components	Class A
EWI	Radiation	EN 33032	With external components	Class A ₍₁₎
	EN 55024, EN 55035			
	ESD	Direct discharge	Indirect discharge HCP & VCP	
	E9D	EN 61000-4-2 Air ± 8kV	Contact ± 6kV	A
EMS	Radiated immunity	EN 610	Α	
EIVIS	Fast transient (2)	EN 61	000-4-4 ±2kV	Α
	Surge (2)	EN 61	000-4-5 ±1kV	Α
	Conducted immunity	EN 610	000-4-6 10Vrms	Α
	PFMF	EN 61	000-4-8 3A/m	А

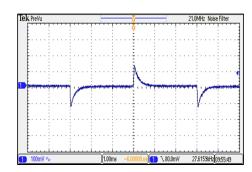

Environmental Specifications			
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C
Case Temperature		+100	°C
Storage Temperature	-55	+125	°C
Humidity (non condensing)		95	% rel. H

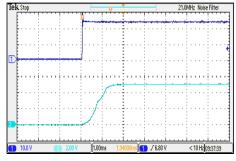
Notes

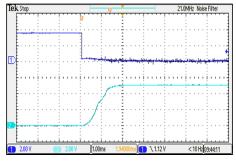

- 1 To meet EN 55032 Class A with an external filter, please contact MINMAX.
- 2 To meet EN 61000-4-4 & EN 61000-4-5 an external filter requested, please contact MINMAX.
- 3 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

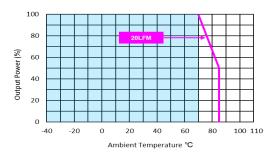
www.minmax.com.tw Rev:0 2020/09/02 Page 3 of 20


All test conditions are at 25°C The figures are identical for MCWI04-24S05

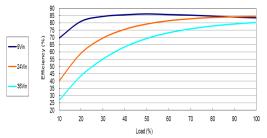

Efficiency Versus Output Current

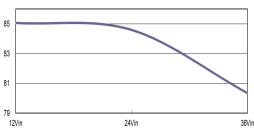

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

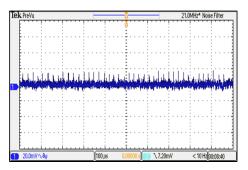

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

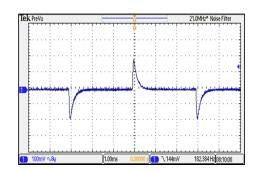
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

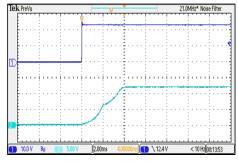

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

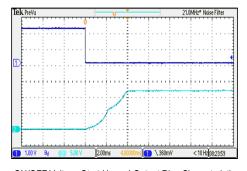

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

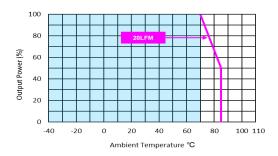
www.minmax.com.tw


All test conditions are at 25°C The figures are identical for MCWI04-24S12

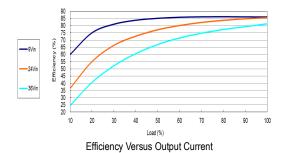

Efficiency Versus Output Current

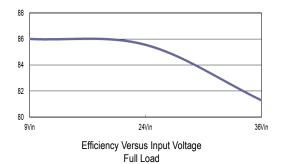

Efficiency Versus Input Voltage Full Load

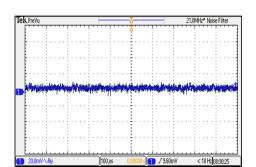

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

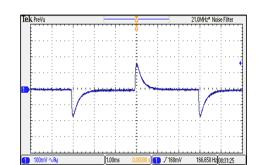

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

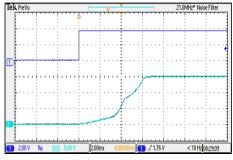


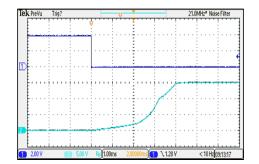

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load



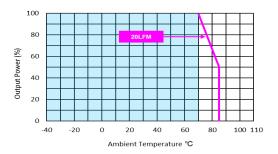

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

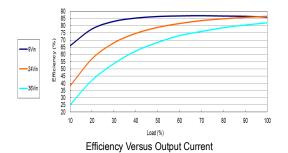
www.minmax.com.tw



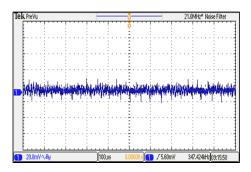


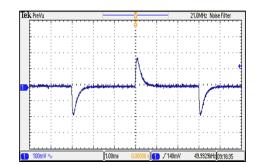
Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

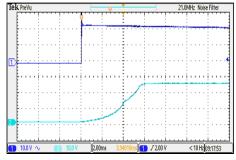

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

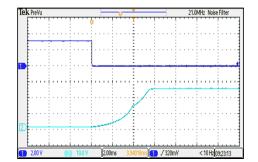
ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load


Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

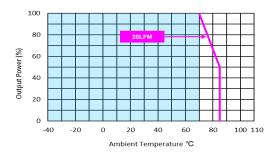

All test conditions are at 25°C The figures are identical for MCWI04-24S24

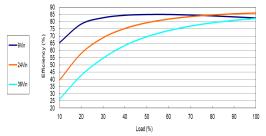
90
88
86
84
82
80
9Vin 24Vin 36Vin
Efficiency Versus Input Voltage


Full Load

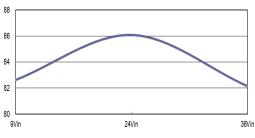


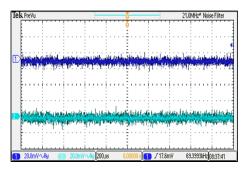
Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

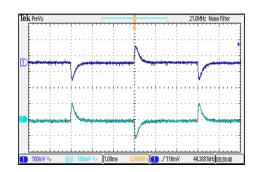

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

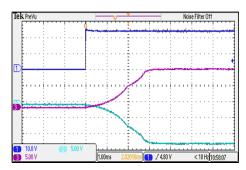


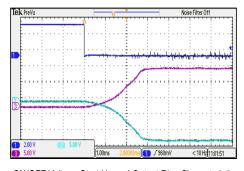
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

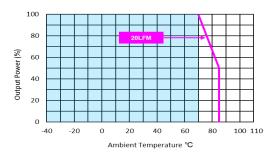

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load


Derating Output Power Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$

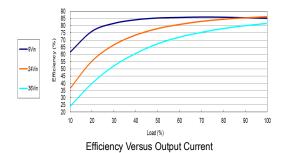

Efficiency Versus Output Current

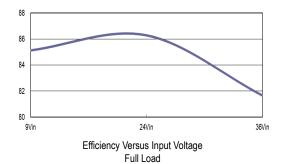

Efficiency Versus Input Voltage Full Load

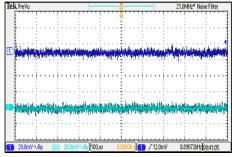

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

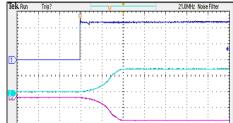


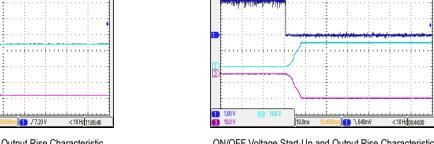

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load



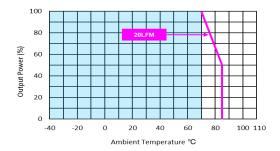
Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MCWI04-24D15

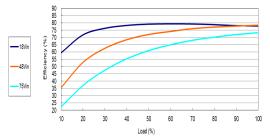


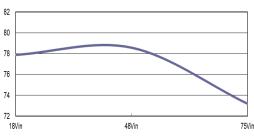


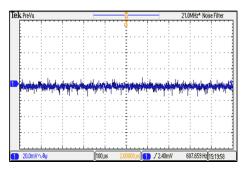
 $V_{in}\text{=}V_{in\;nom}\,;\,Full\;Load$

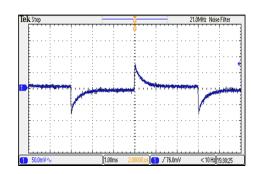


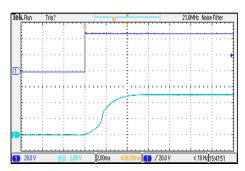
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in \, nom}$

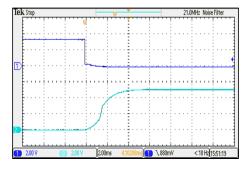


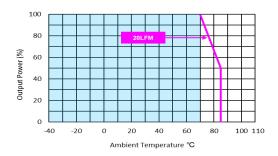

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \; ; \; \text{Full Load}$

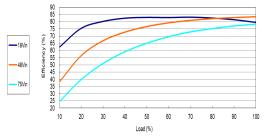

Derating Output Power Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$

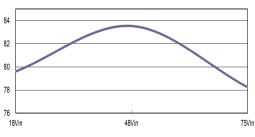

Efficiency Versus Output Current

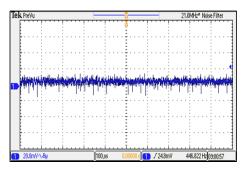

Efficiency Versus Input Voltage Full Load

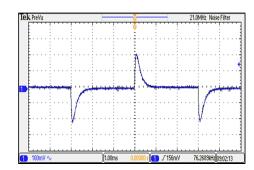

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

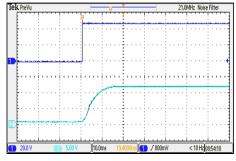

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

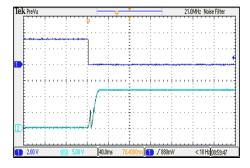

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}}$; Full Load

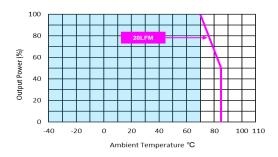

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

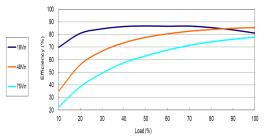

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

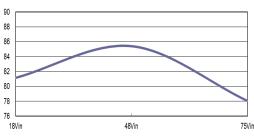

Efficiency Versus Output Current

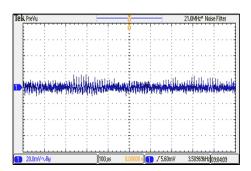

Efficiency Versus Input Voltage Full Load

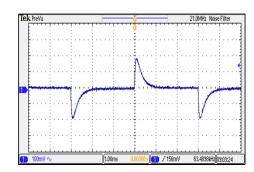

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

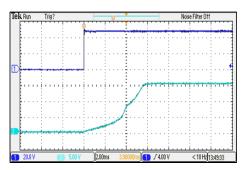

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

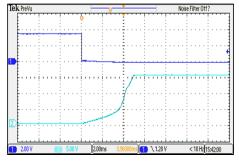

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

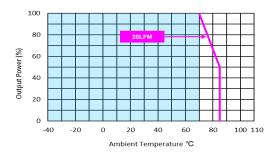

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

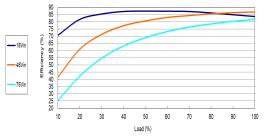

Derating Output Power Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$

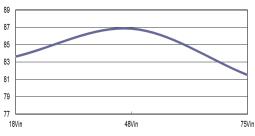

Efficiency Versus Output Current

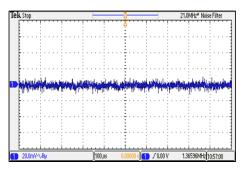

Efficiency Versus Input Voltage Full Load

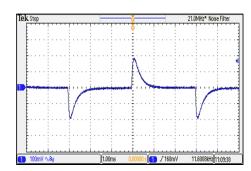

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

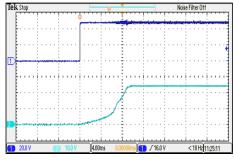

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

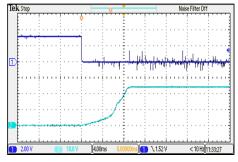

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

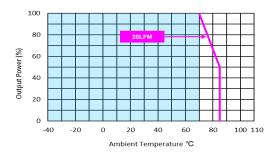

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

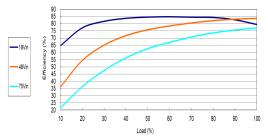

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

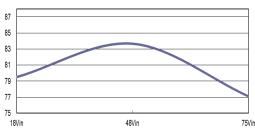

Efficiency Versus Output Current

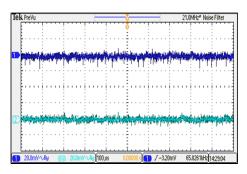

Efficiency Versus Input Voltage Full Load

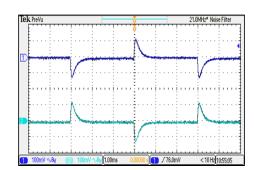

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

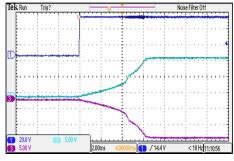

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

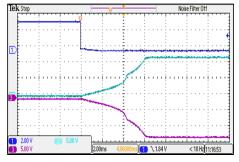

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

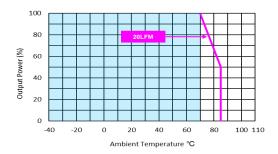

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

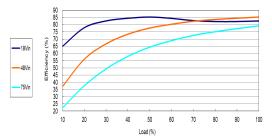

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

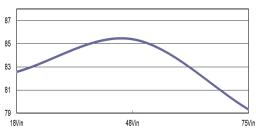

Efficiency Versus Output Current

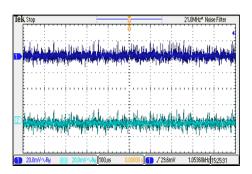

Efficiency Versus Input Voltage Full Load

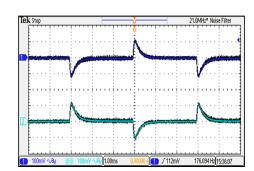

Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load

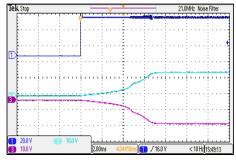

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\;nom}$

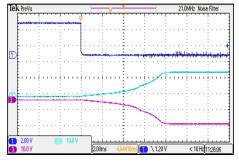

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

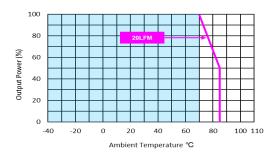

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load


Derating Output Power Versus Ambient Temperature $V_{\text{in}} \! = \! V_{\text{in nom}}$


Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{\text{in nom}}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in} = V_{in \; nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

Derating Output Power Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

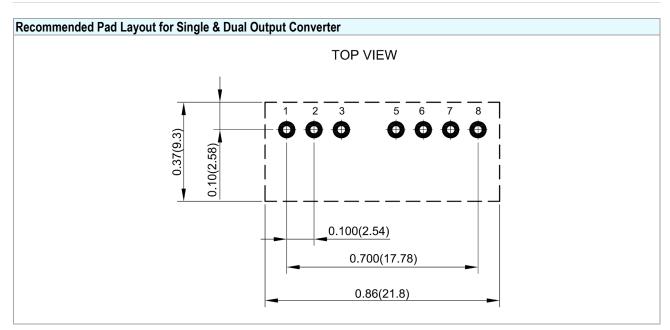
Pin Connec	etions	
Pin	Single Output	Dual Output
1	-Vin	-Vin
2	+Vin	+Vin
3	Remote On/Off	Remote On/Off
5	NC	NC
6	+Vout	+Vout
7	-Vout	Common
8	NC	-Vout

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

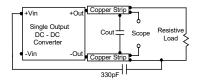
► Pins: ±0.1(±0.004)

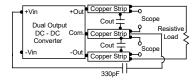

Physical Characteristics

Case Size : 21.8x9.3x11.2 mm (0.86x0.37x0.44 inches)

Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

Pin Material : Phosphor Bronze with Tin Plate


Weight : 4.8g



Test Setup

Peak-to-Peak Output Noise Measurement Test

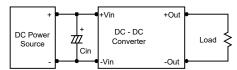
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

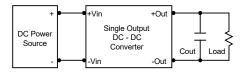
Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic high is 6V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/°C. The maximum sink current at on/off terminal during a logic low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal= (under 0.6VDC or open circuit) is 1mA.

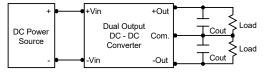
Maximum Capacitive Load


The MCWI04 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

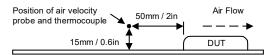
Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00 kHz) capacitor of a $1.5\mu\text{F}$ for the 24V and 48V input devices.

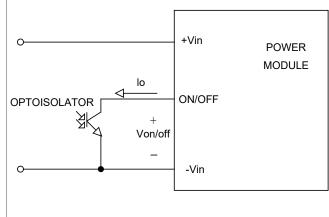
Output Ripple Reduction

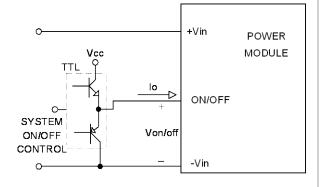

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

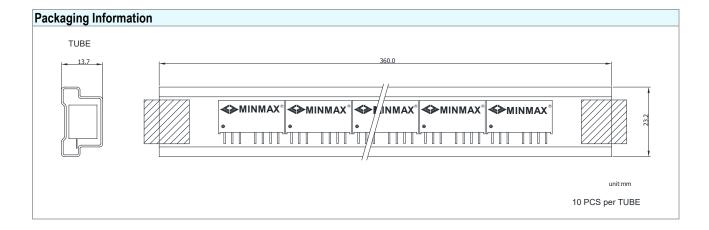
Remote ON/OFF Implementation


The positive logic remote ON/OFF control circuit is included.


Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

The negative logic remote ON/OFF control circuit is included.

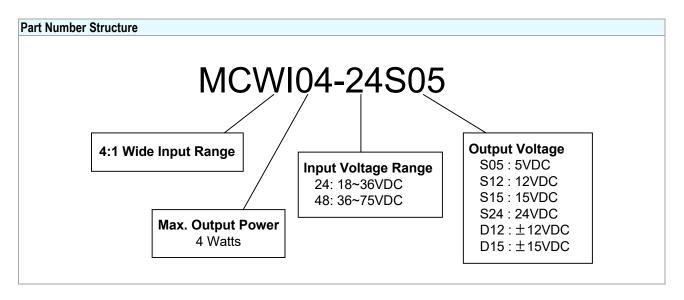
Turns the module ON during logic Low on the On/Off pin and turns OFF during logic High. The On/Off pin is an open collector/drain logic input signal (Von/off) that referenced to GND. If not using the remote on/off feature. Please short circuit between on/off pin and –Vin pin to turn the module on.


Remote ON/OFF implementation

Isolated-Closure Remote ON/OFF

Level Control Using TTL Output

Wave Soldering Considerations


Lead free wave solder profile

Zone	Reference Parameter			
Preheat	Rise temp. speed : 3°C/sec max.			
zone	Preheat temp. ∶ 100~130°C			
Actual	Peak temp. : 250~260°C			
heating	Peak time(T1+T2): 4~6 sec			

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

MTBF and Reliability

The MTBF of MCWI04 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MCWI04-24S05	2,859,569	
MCWI04-24S12	3,564,351	
MCWI04-24S15	3,787,227	
MCWI04-24S24	3,712,520	
MCWI04-24D12	2,945,156	
MCWI04-24D15	3,682,175	_
MCWI04-48S05	2,608,248	Hours
MCWI04-48S12	3,488,039	
MCWI04-48S15	3,689,582	
MCWI04-48S24	3,360,430	
MCWI04-48D12	2,858,990	
MCWI04-48D15	3,206,793	