

MAEU02-HI Series EC Note

DC-DC CONVERTER 2W, Ultra-High I/O Isolation, SIP Package

Features

- Industrial Standard SIP-7 Package
- Unregulated Output Voltage
- Ultra-high I/O Isolation 5700VDC
- Operating Ambient Temp. Range -40°C to +85°C
- Short Circuit Protection
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX MAEU02-HI series is a range of isolated 2W DC-DC converter modules in SIP-7 package which feature a high I/O isolation voltage rated for 5700VDC, using for electricity and energy applications. There are 40 models available for 5, 12, 15 and 24V input. These converters offer a cost-effective solution for wind turbine, solar panel, transportation systems, industrial control equipments where a high I/O isolation is required.

Table of contents

Model Selection Guide	. P2	Recommended Pad Layout	. P45
Input Specifications	. P2	Test Setup	. P46
Output Specifications	. P3	Technical Notes	. P46
Output Voltage Tolerance	. P3	Packaging Information for Tube	. P47
Isolation, Safety Standards	. P3	Wave Soldering Considerations	. P47
General Specifications	. P3	Hand Welding Parameter	. P47
Environmental Specifications	. P4	Part Number Structure	. P48
Characteristic Curves	. P5	MTBF and Reliability	. P48
Package Specifications	P45		

Date:2024-05-24 Rev:3

Model Number	Input Voltage	Output Voltage	Output	Inp	Input Current		Max. capacitive	Efficiency	
Number	(Range)	Voltage	Ouncil	@Max Load	@No Load	regulation	Load	@Max Load	
	VDC	VDC	Мах	mA(tvn)	mA(typ.)	% (max)	υF	%	
MAEU02-05S033HI	100	3.3	500	446	(iyp.)	20	1650	74	
MAEU02-05S05HI		5	400	500		15	940	80	
MAEU02-05S09HI		9	222	493		10	940	81	
MAEU02-05S12HI		12	168	492		10	440	82	
MAEU02-05S15HI		15	132	501		10	440	79	
MAEU02-05D05HI	5 +10%	+5	+200	513	35	15	440#	78	
MAEU02-05D09HI	0 110 /0	+9	+112	504		10	440#	80	
MAEU02-05D12HI		+12	+84	504		10	200#	80	
MAEU02-05D15HI		+15	+66	501		10	200#	79	
		15	66	001			200		
MAEU02-05A1509HI		-9	-110	- 495		10	440	80	
MAEU02-12S033HI		33	500	181		20	1650	76	
MAEU02-12S05HI		5	400	211		15	940	79	
MAEU02-12S09HI		9	222	206		10	940	81	
MAEU02-12S12HI		12	168	202		10	440	83	
MAEU02-12S15HI		15	132	201		10	440	82	
MAEU02-12D05HI	12 +10%	+5	+200	211	17	15	440#	79	
MAEU02-12D09HI	12 210 /0	+9	+112	207		10	440#	81	
MAEU02-12D12HI		+12	+84	205		10	200#	82	
MAFU02-12D15HI		+15	+66	199		10	200#	83	
		15	66	100				200	
MAEU02-12A1509HI		-9	-110	- 204		10	440	81	
MAEU02-15S033HI		33	500	143		20	1650	77	
MAEU02-15S05HI		5	400	169		15	940	79	
MAEU02-15S09HI		9	222	160		10	940	83	
MAEU02-15S12HI		12	168	162		10	440	83	
MAEU02-15S15HI		15	132	155		10	440	85	
MAEU02-15D05HI	15 ±10%	±5	±200	165	16	15	440#	81	
MAEU02-15D09HI		±9	±112	160		10	440#	84	
MAEU02-15D12HI		±12	±84	164		10	200#	82	
MAEU02-15D15HI		±15	±66	161		10	200#	82	
		15	66	450		40	200	00	
MAEU02-15A1509HI		-9	-110	159		10	440	83	
MAEU02-24S033HI		3.3	500	90		20	1650	76	
MAEU02-24S05HI		5	400	108		15	940	77	
MAEU02-24S09HI		9	222	103		10	940	81	
MAEU02-24S12HI		12	168	102		10	440	82	
MAEU02-24S15HI		15	132	101		10	440	82	
MAEU02-24D05HI	24 ±10%	±5	±200	108	12	15	440#	77	
MAEU02-24D09HI		±9	±112	104		10	440#	81	
MAEU02-24D12HI		±12	±84	104		10	200#	81	
MAEU02-24D15HI		±15	±66	103		10	200#	80	
			1						
MAEU02 24445001		15	66	100		10	200	01	

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	-0.7		9	
	12V Input Models	-0.7		18	
input Surge Voltage (1 sec. max.)	15V Input Models	-0.7		20	
	24V Input Models	-0.7		30	VDC
	5V Input Models	4.5	5	5.5	
Innut Veltage Dange	12V Input Models	10.8	12	13.2	
Input voltage Range	15V Input Models	13.5	15	16.5	
	24V Input Models	21.6	24	26.4	
Short Circuit Input Power				1000	mW
Input Filter	All Models		Internal Capacitor		

Date:2024-05-24 Rev:3

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±5.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	For Vin Change of 1%		±1.2		%
	lo=20% to 100%		See Model Se	election Guide	
Load Regulation		(Operation a	at lower load wi	ll not damage t	he converter,
		but	it may not mee	et all specificati	ons)
Ripple & Noise	0-20MHz Bandwidth			100	mV _{P-P}
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	Continu	ous, Automatic Re	ecovery		

Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
	Rated for 60 seconds	5200			VDC	
I/O Isolation voltage	Tested for 1 second	5700			VDC	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100kHz, 1V		7		pF	
Cofety Assessed	UL/cUL 60950-1 recognition (CSA certificate), IEC/EN 60950-1 (CB-report)					
Salety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)					

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			100		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,109,000			Hours

Date:2024-05-24 Rev:3

Environmental Specifications

Livitoimentai opecincations					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C		
Case Temperature		+95	°C		
Storage Temperature Range	-55	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes

1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.

- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- 6 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MAEU02-05S033HI $\,$

0 20 40 60 80 Ambient Temperature °C 100 110

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Date:2024-05-24 Rev:3

0

-40

-20

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05S05HI

Date:2024-05-24 Rev:3

0

-40

-20

0

20

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

40

Ambient Temperature °C

60

80

100 110

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05S09HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05S12HI

20 40 60 Ambient Temperature ℃ 100 110

80

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05S15HI

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

40 20 0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05D05HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05D09HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-05D12HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25 $^\circ C$ The figures are identical for MAEU02-05D15HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Characteristic Curves

All test conditions are at 25 $^\circ C$ The figures are identical for MAEU02-05A1509HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MAEU02-12S033HI $\,$

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12S05HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12S09HI

0 20 40 60 Ambient Temperature °C 80

100 110

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Date:2024-05-24 Rev:3

0

-40

-20

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12S12HI

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12S15HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Vin=Vin nom ; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12D05HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \text{ ; Full Load}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12D09HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12D12HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-12D15HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Characteristic Curves

All test conditions are at 25 $^\circ C$ The figures are identical for MAEU02-12A1509HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MAEU02-15S033HI $\,$

Date:2024-05-24 Rev:3

20 0

-40

-20

0

20

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

40

Ambient Temperature °C

60

80

100 110

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15S05HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Date:2024-05-24 Rev:3

16.5

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15S09HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15S12HI

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom

20

40

Ambient Temperature °C

80

Date:2024-05-24 Rev:3

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15S15HI

0 20 40 60 80 Ambient Temperature °C 100 110

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

0

-40

-20

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15D05HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15D09HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15D12HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Vin=Vin nom ; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-15D15HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Characteristic Curves

All test conditions are at 25 $^\circ C$ The figures are identical for MAEU02-15A1509HI

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{in}=V_{in\,nom}$$; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MAEU02-24S033HI $\,$

0 20 40 60 Ambient Temperature ℃

80

100 110

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Date:2024-05-24 Rev:3

0

-40

-20

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24S05HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24S09HI

Derating Output Current Versus Ambient Temperature and Airflow V_{in} =V_{in nom}

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

20 0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24S12HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

20

40

Ambient Temperature °C

60

80

100 110

Date:2024-05-24 Rev:3

20 0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24S15HI

20

40

Ambient Temperature °C

60

80

100 110

20 0

-40

-20

0

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24D05HI

60

80

100 110

Date:2024-05-24 Rev:3

80

-40

-20

0

20

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} {=} V_{\text{in nom}}$

40

Ambient Temperature °C

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24D09HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}}$; Full Load

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24D12HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25°C The figures are identical for MAEU02-24D15HI

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Typical Input Start-Up and Output Rise Characteristic $$V_{\mbox{in}}$=V_{\mbox{in}\,\mbox{nom}}$; Full Load$

Date:2024-05-24 Rev:3

Characteristic Curves

All test conditions are at 25 $^\circ C$ The figures are identical for MAEU02-24A1509HI

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2024-05-24 Rev:3

Physical Characteristics

Case Size	:	19.5x7.1x10.2mm (0.77x0.28x0.40 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Pin Material	:	Alloy 42
Weight	:	2.4g

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Maximum Capacitive Load

The MAEU02-HI series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for the 5V input devices, a 1.0μ F for the 12V,15V input devices and a 0.47μ F for the 24V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1.0µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Date:2024-05-24 Rev:3

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag

Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2024-05-24 Rev:3

MTBF and Reliability

The MTBF of MAEU02-HI series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MAEU02-05S033HI	1,235,000	
MAEU02-05S05HI	1,328,000	
MAEU02-05S09HI	1,276,000	
MAEU02-05S12HI	1,303,000	
MAEU02-05S15HI	1,314,000	
MAEU02-05D05HI	1,109,000	
MAEU02-05D09HI	1,195,000	
MAEU02-05D12HI	1,175,000	
MAEU02-05D15HI	1,163,000	
MAEU02-05A1509HI	1,171,000	
MAEU02-12S033HI	1,538,000	
MAEU02-12S05HI	1,507,000	
MAEU02-12S09HI	1,575,000	
MAEU02-12S12HI	1,685,000	
MAEU02-12S15HI	1,683,000	
MAEU02-12D05HI	1,174,000	
MAEU02-12D09HI	1,250,000	
MAEU02-12D12HI	1,283,000	
MAEU02-12D15HI	1,322,000	
MAEU02-12A1509HI	1,255,000	
MAEU02-15S033HI	1,569,000	Hours
MAEU02-15S05HI	1,510,000	
MAEU02-15S09HI	1,613,000	
MAEU02-15S12HI	1,613,000	
MAEU02-15S15HI	1,694,000	
MAEU02-15D05HI	1,260,000	
MAEU02-15D09HI	1,360,000	
MAEU02-15D12HI	1,264,000	
MAEU02-15D15HI	1,293,000	
MAEU02-15A1509HI	1,326,000	
MAEU02-24S033HI	1,715,000	
MAEU02-24S05HI	1,606,000	
MAEU02-24S09HI	1,787,000	
MAEU02-24S12HI	1,807,000	
MAEU02-24S15HI	1,807,000	
MAEU02-24D05HI	1,215,000	
MAEU02-24D09HI	1,360,000	
MAEU02-24S12HI	1,360,000	
MAEU02-24S15HI	1,240,000	
MAEU02-24A1509HI	1,410,000	

Date:2024-05-24 Rev:3