

APM-40 Series EC Note

AC-DC Power Module 40W, Industrial & Medical Safety

Features

- Fully Encapsulated Plastic Case for PCB, Chassis and DIN-Rail Mounting Version
- Universal Input 85~264VAC, 47~440Hz
- I/O Isolation 4000VAC with Reinforced Insulation
- Operating Ambient Temp. Range -40°C to +80°C
- Overload/Voltage and Short Circuit Protection
- EMI Emission EN 55011/32 Class B Approved
- EMC Immunity EN 61000-4-2,3,4,5,6,8,11 Approved
- Medical EMC Standard with 4th Edition of EMI EN 55011 & EMS EN 60601-1-2 Approved
- Medical Safety with 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved
- UL508 Safety Approval Specifically for Industrial Application
- Risk Management Report Acquisition according to ISO 14971
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

Introducing the MINMAX APM-40 series - an innovative lineup of fully encapsulated AC-DC power modules designed to meet the highest standards in performance, safety, and reliability. Engineered to excel in challenging environments, these high-performance products boast an extended operating temperature range of -40°C to +80°C, ensuring optimal functionality in diverse applications.

With a universal input voltage of 85-264VAC and comprehensive safety approvals, including UL/IEC/EN certifications for medical safety and UL 508 listing, the APM-40 series is well-equipped for integration into products targeting global markets. These power supply modules have also earned the EMI Emission EN 55011/32 Class B approval, attesting to their compliance with stringent electromagnetic interference standards.

In alignment with ISO 14971 Medical Device Risk Management, the APM-40 series undergoes a rigorous risk assessment process. This ensures that these power modules not only meet the demanding criteria for performance but also adhere to safety benchmarks outlined in ISO 14971. In summary, the APM-40 series power modules provide an ideal solution for a wide range of space-critical applications in commercial, medical, and industrial electronic equipment.

Table of contents

Model Selection Guide	P2	Package Specifications for screw terminal with DIN Rail Mounting	P11
Input Specifications	P2	Screw terminal with DIN Rail Mounting	P11
Output Specifications	P2	Recommended Pad Layout for Single & Dual Output Converter	P12
General Specifications	P2	Packaging Information for Box	P12
EMC Specifications	P3	Wave Soldering Considerations	P13
Environmental Specifications	P3	Hand Welding Parameter	P13
Characteristic Curves	P4	Part Number Structure	P14
Package Specifications PCB Mounting	P10	MTBF and Reliability	P14
Package Specifications Chassis Mounting with screw terminal	P10		

Date:2024-06-18 Rev:4

APM-40 Series - EC Notes 1

S> MINMAX

DD12C

Max. capacitive

Load

Efficiency

(typ.)

@Max. Load, 115VAC

Model Selection Guide						
Model	Output	Output	Input			
Number	Voltage	Current	Cur	rent		
			115VAC, 60Hz	230VAC, 50Hz		
		Max.	@Max	. Load		
	VDC	mA	mA(typ.)		
APM-40S05	5	8000	716	429		

μF % 8000 81 APM-40S12 3330 689 12 414 3900 84 APM-40S15 2660 680 408 85 15 3900 APM-40S24 24 1660 687 413 680 84 APM-40D12 687 413 84 ±12 ±1660 1500# APM-40D15 ±15 680 408 1000# 85 ±1330

For each output

Input Specifications							
Parameter	Conditions / Model		Min.	Тур.	Max.	Unit	
AC Voltage Input Range		85		264	VAC		
Input Frequency Range	A II M		47		440	Hz	
DC Voltage Input Range	All M	odels	120		370	VDC	
No-Load Power Consumption					0.3	W	
Innich Current	115VAC	Cold Start at 25°C			30	А	
Inrush Current	230VAC	Cold Start at 25°C			60	A	

Output Specifications						
Parameter	Parameter Conditions / Model		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0		%Vnom.
Line Regulation	Vin=Min. to N	/lax. @Full Load		±0.5		%
Land Damieting	1. 00/ 1. 4000/	Single Output Model		±1.0		%
Load Regulation	lo=0% to 100%	Dual Output Models		±2.0		%
Minimum Load	No minimum Load Requirement					
Disala () Nata a	0-20 MHz Bandwidth	5V Output Models		1.5	1.8	%V _{PP} of Vo
Ripple & Noise ₍₃₎		Other Output Models		1.0	1.3	%V _{PP} of Vo
Over Voltage Protection	Zener d	Zener diode clamp		120		% of Vo
Temperature Coefficient				±0.02		%/°C
Overshoot					5	%
O and and Dark after	85VAC, Hiccup N	85VAC, Hiccup Mode, auto-recovery				0/ 1
Over Load Protection	(long term overload con	dition may cause damage)	105			% Inom.
Short Circuit Protection		Hiccup mode, Auto	matic Recovery			- ·

General Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	4000			VAC		
Leakage Current			80		μA		
I/O Isolation Resistance	500 VDC	1000			MΩ		
Switching Frequency			130		kHz		
Held on The s	115VAC, 60Hz		25		ms		
Hold-up Time	230VAC, 50Hz		80		ms		
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign 200,000			Hours			
	UL/cUL 60950-1, CSA C22.2 No 60950-1						
	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1						
Safety Standards	IEC/EN 60950-1, IEC/EN 60601-1 3rd Edition 2xMOPP						
	UL508, CSA C22.2 No.107.1-01						
	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report), UL/cUL 508 listed certificate						
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)						
	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3rd Edition (CB-report)						

Date:2024-06-18 Rev:4

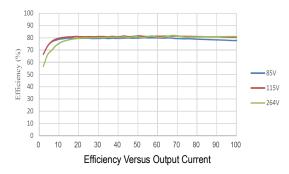
EMC Specifications

Parameter		Standards & Level				
E N4	Conduction	EN 55011, EN55032, EN 61000-6-4,			Olara D	
EMI	Radiation	EN 61	1000-6-3	Without external components	Class B	
	EN 60601-1-2 4th, EN 55035	, EN 61000-6-2, EN 6	1000-6-1			
	ESD	EN	61000-4-2 Air ± 15kV	, Contact ± 8kV	A	
	Radiated immunity	EN 61000-4-3 10V/m		A		
	Fast transient	EN 61000-4-4 ±2kV			A	
	Surge	EN 61000-4-5 ±1kV			A	
EMS	Conducted immunity	EN 61000-4-6 10Vrms			A	
	PFMF	EN 61000-4-8 30A/m			A	
	Dips & Interruptions	EN 61000-4-11	0% of 230VAC	0.5 cycle	A	
			0% of 230VAC	1 cycle	A	
			70% of 230VAC	25/30 cycle	A	
			0% of 230VAC	250/300 cycle	В	

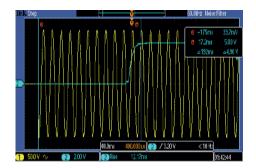
Environmental Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Operating Ambient Temperature Range		-40		+80	°C
Power Derating	Above +60°C		1.5		W/°C
Storage Temperature Range		-40		+95	°C
Thermal Shutdown	Shutdown, Internal IC Junction Temperature		142		°C
	Automatic Recovery, Internal IC Junction Temperature		67		°C
Humidity (non condensing)				95	% rel. H
Lead Temperature				000	°C
(1.5mm from case for 10Sec.)				260	

Notes

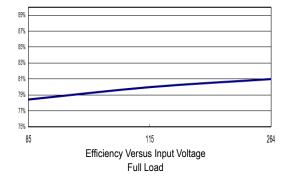
1 This product is not designed for use in critical life support systems, equipment used in hazardous environment, nuclear control systems or other such applications which necessitate specific safety and regulatory standards other the ones listed in this datasheet.

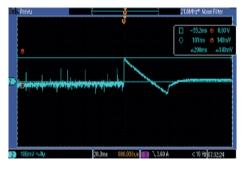

- 2 Specifications typical at Ta=+25°C, resistive load, 115VAC, 60Hz input voltage, after warm-up time rated output current unless otherwise noted.
- 3 Ripple & Noise measured with a 0.1 μ F/50V MLCC and a 1 μ F/50V Aluminum electrolytic.
- 4 Safety approvals cover frequency 47-63 Hz.
- 5 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 6 Other input and output voltage may be available, please contact MINMAX.
- 7 Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2024-06-18 Rev:4


Characteristic Curves

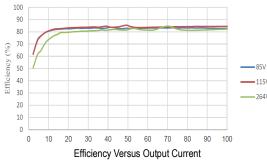
All test conditions are at 25°C The figures are identical for APM-40S05





Typical Output Ripple and Noise Vin=Vin nom ; Full Load

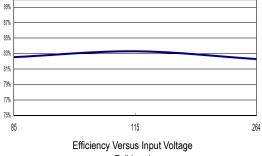
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

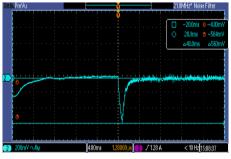


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

Characteristic Curves

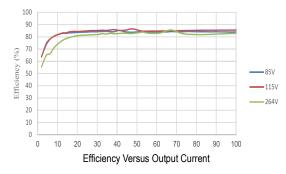
All test conditions are at 25°C The figures are identical for APM-40S12



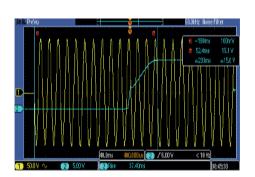


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

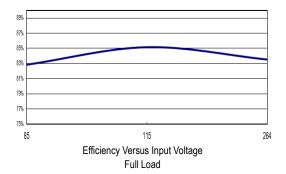
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \ ; \ \text{Full Load}$

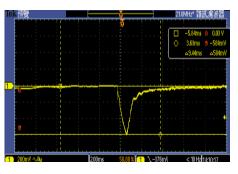


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}


Characteristic Curves

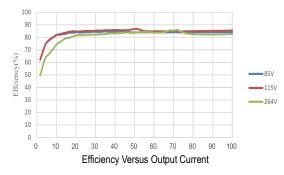
All test conditions are at 25°C The figures are identical for APM-40S15

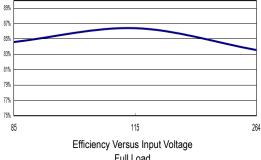


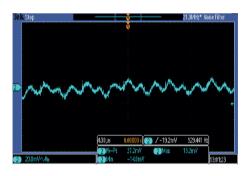


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

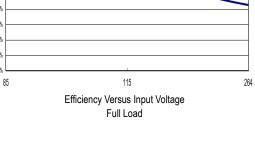
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

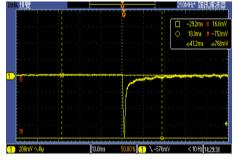



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} =V_{in nom}



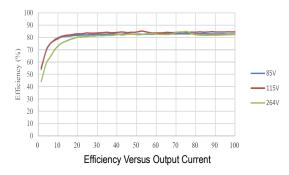
Characteristic Curves

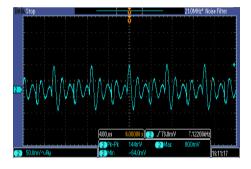

All test conditions are at 25°C The figures are identical for APM-40S24

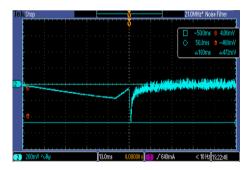


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

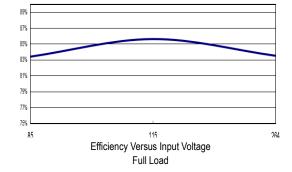
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom


Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load


Date:2024-06-18 Rev:4

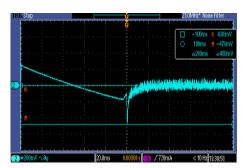

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for APM-40D12 $\,$

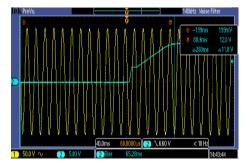

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (+Vout)



Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}{=}V_{\text{in nom}}$ (+Vout)

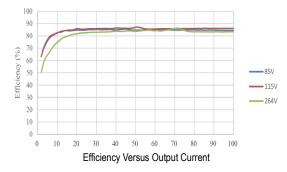


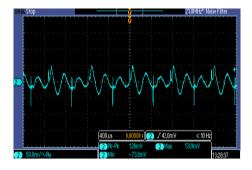
Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load (+Vout)

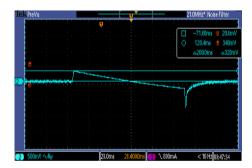


Typical Output Ripple and Noise Vin=Vin nom; Full Load (-Vout)

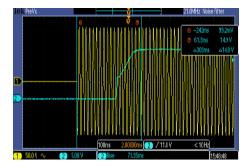
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in}=V_{in nom} (-Vout)

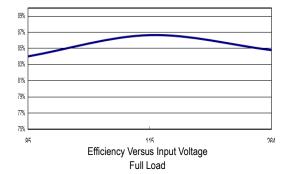



Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load (-Vout)

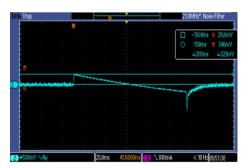

Characteristic Curves

All test conditions are at 25°C The figures are identical for APM-40D15

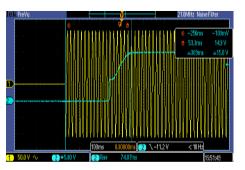



Typical Output Ripple and Noise Vin=Vin nom; Full Load (+Vout)

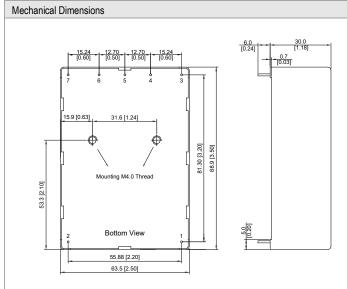
Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$ (+Vout)



Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load (+Vout)



Typical Output Ripple and Noise Vin=Vin nom; Full Load (-Vout)

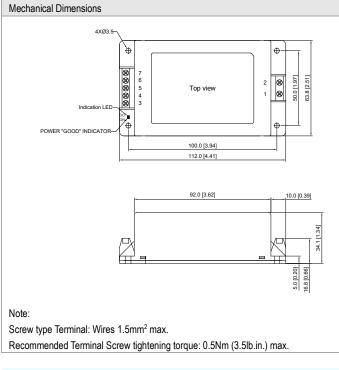

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$ (-Vout)

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom ; Full Load (-Vout)

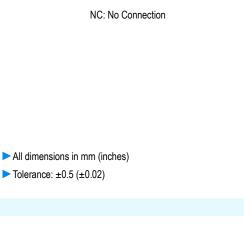
Package Specifications PCB Mounting

Pin Connections					
Pin	Single Output	Dual Output	Diameter mm (inches)		
1	AC (N)	AC (N)	Ø 1.0 [0.04]		
2	AC (L)	AC (L)	Ø 1.0 [0.04]		
3	+Vout	+Vout	Ø 1.0 [0.04]		
4	No Pin	No Pin	Ø 1.0 [0.04]		
5	-Vout	Common	Ø 1.0 [0.04]		
6	No Pin	No Pin	Ø 1.0 [0.04]		
7	NC	-Vout	Ø 1.0 [0.04]		

NC: No Connection


All dimensions in mm (inches)

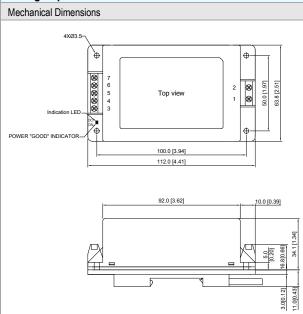
- ► Tolerance: ±0.5 (±0.02)
- ▶ Pin pitch tolerance: ±0.25 (±0.01)
- Pin diameter tolerance: X.X±0.1 (X.XX±0.004)


Physical Characteristics

Case Size	:	88.9x63.5x30.0mm (3.50x2.50x1.18 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Weight	:	310g

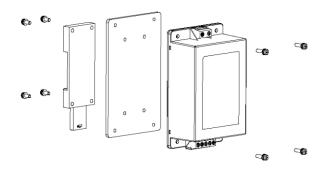
Package Specifications Chassis Mounting with screw terminal (order code suffix C)

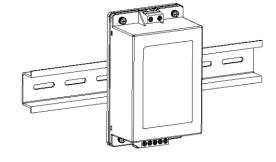
Pin	Single Output	Dual Output
1	AC (N)	AC (N)
2	AC (L)	AC (L)
3	+Vout	+Vout
4	NC	NC
5	-Vout	Common
6	NC	NC
7	NC	-Vout



Physical Characteristics

Case Size	:	112.0x63.8x34.1mm (4.41x2.51x1.34 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Weight	:	320g

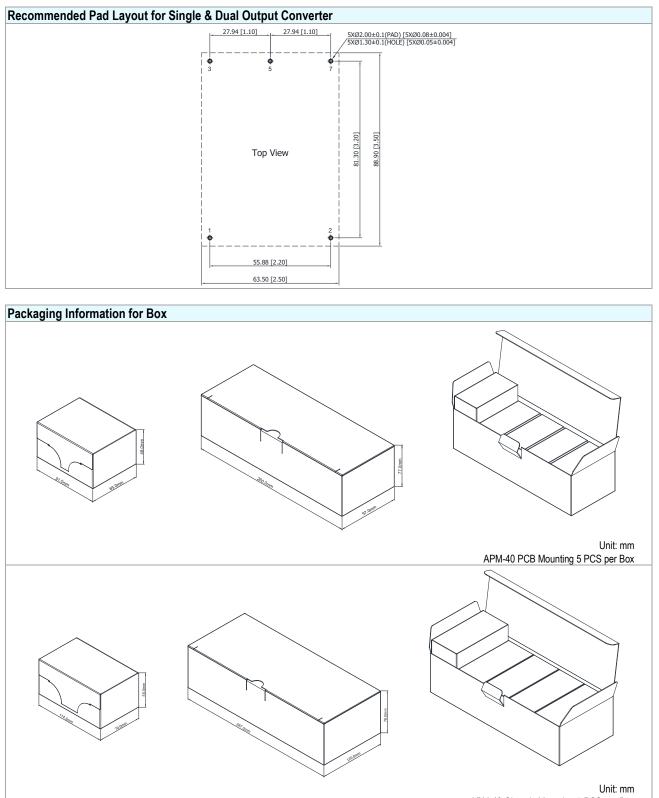

Package Specifications for screw terminal with DIN Rail Mounting (order code suffix AC-DIN-02)



Physical Characteristics

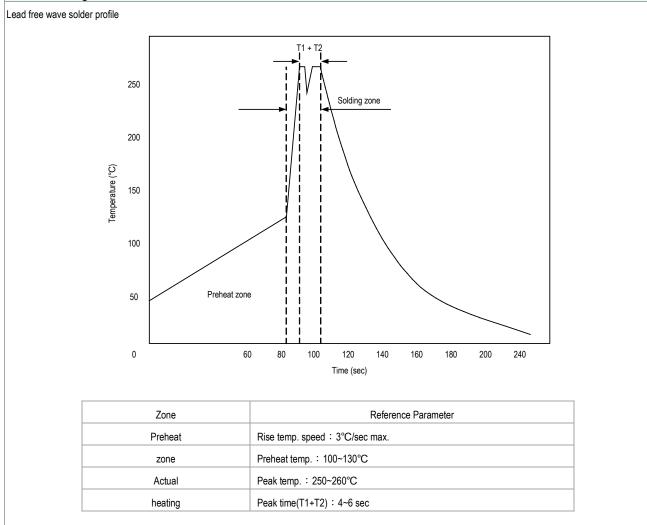
Case Size	:	112.0x63.8x34.1mm (4.41x2.51x1.34 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Weight	:	374g

Screw terminal with DIN Rail Mounting



Note:

Recommended tightening torque: 0.35Nm (3.1lb.in.) max.



APM-40 Chassis Mounting 5 PCS per Box

Wave Soldering Considerations

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag

Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec

Temp.: 380~400°C

Date:2024-06-18 Rev:4

Part Num	ber St	ructure								
APM	-	40		S	_		05			C
		Output Power	Outpu	It Quantity	Γ	Out	put Vo	Itage		Package Type
		40 Watt	S:	Single		05:	5	VDC	N/A:	PCB Mounting
			D:	Dual		12:	12	VDC	C :	Chassis Mounting with screw terminal
						15:	15	VDC		
						24:	24	VDC		
					-					

MTBF and Reliability

The MTBF of APM-40 series of AC-DC Power Module has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit		
APM-40S05				
APM-40S12				
APM-40S15	000.000	Usua		
APM-40S24	200,000	Hours		
APM-40D12				
APM-40D15				

Date:2024-06-18 Rev:4