

Electric Characteristic Note

AJM-24 Series EC Note

AC-DC Power Module 24W, Industrial & Medical Safety

Features

- ► Fully Encapsulated Plastic Case for PCB, Chassis and DIN-Rail Mounting Version
- ► Universal Input 85~264VAC, 47~440Hz
- ► I/O Isolation 4000VAC with Reinforced Insulation
- ➤ Operating Ambient Temp. Range -40°C to +80°C
- Overload/Voltage and Short Circuit Protection
- ► EMI Emission EN 55011/32 Class B Approved
- ► EMC Immunity EN 61000-4-2,3,4,5,6,8,11 Approved
- ► Medical EMC Standard with 4th Edition of EMI EN 55011 & EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1 Approved
- ► UL508 Safety Approval Specifically for Industrial Application
- ▶ Risk Management Report Acquisition according to ISO 14971
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ► Distributed power architectures
- ➤ Workstations
- Computer equipment
- ➤ Communications equipment

Product Overview

Introducing the innovative MINMAX AJM-24 series, a range of fully encapsulated AC-DC power modules designed for high performance in diverse applications. With an impressive extended operating temperature range of -40°C to +80°C, these modules ensure reliable functionality in challenging environments. Boasting a universal input voltage of 85-264VAC and holding essential safety approvals such as UL/IEC/EN, including compliance with medical safety standards and UL 508 listing, the AJM-24 series is poised for integration into products destined for global markets.

Furthermore, these power modules adhere to stringent EMI Emission standards, having received EN 55011/32 Class B approval. This exceptional feature makes them an ideal choice for applications in commercial, medical, and industrial electronic equipment, particularly those with space constraints. In alignment with ISO 14971 Medical Device Risk Management standards, the AJM-24 series undergoes a meticulous risk assessment process. This ensures that the power modules not only meet the highest quality and safety benchmarks but also adhere to the stringent risk management protocols outlined in ISO 14971.

Table of contents

Model Selection GuideP	Package Specifications for screw terminal with DIN Rail Mounting P12
Input SpecificationsP	2 Screw terminal with DIN Rail MountingP12
Output SpecificationsP	Recommended Pad Layout for Single & Dual Output Converter
General SpecificationsP	Packaging Information for BoxP13
EMC SpecificationsP	B Wave Soldering Considerations
Environmental Specifications	Hand Welding ParameterP14
Characteristic Curves	Part Number StructureP15
Package Specifications PCB MountingP1	1 MTBF and ReliabilityP15
Package Specifications Chassis Mounting with screw terminal	1

Model Selection (odel Selection Guide						
Model	Output	Output	In	put	Max. capacitive	Efficiency	
Number	Voltage	Current	Cur	rent	Load	(typ.)	
			115VAC, 60Hz	230VAC, 50Hz			
		Max.	@Max	c. Load		@Max. Load, 115VAC	
	VDC	mA	mA(typ.)		μF	%	
AJM-24S05	5	3000	282	169	2200	77	
AJM-24S09	9	2666	424	255	1000	82	
AJM-24S12	12	2000	419	252	1000	83	
AJM-24S15	15	1600	424	255	680	82	
AJM-24S24	24	1000	409	246	470	85	
AJM-24D12	±12	±1000	414	249	470#	84	
AJM-24D15	±15	±800	414	249	330#	84	

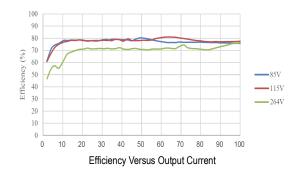
For each output

Input Specifications						
Parameter	Conditions /	Model	Min.	Тур.	Max.	Unit
AC Voltage Input Range			85		264	VAC
Input Frequency Range	All Manda	All Models			440	Hz
DC Voltage Input Range	All Mode				370	VDC
No-Load Power Consumption					0.3	W
Level Owner	115VAC	115VAC Cold Start at 25°C			20	А
Inrush Current	230VAC				40	Α

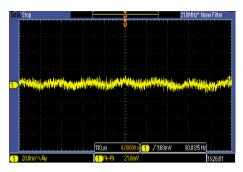
Output Specifications						
Parameter	Condition	ons / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0		%Vnom.
Line Regulation	Vin=Min. to N	Max. @Full Load		±0.5		%
Load Danielia	In-00/ to 4000/	Single Output Model		±0.5		%
Load Regulation	lo=0% to 100%	Dual Output Models		±2.5		%
Minimum Load	No minimum Load Requirement					
Disals 0 Mais	0-20 MHz Bandwidth	5V Output Models		1.5	1.8	%V _{PP} of Vo
Ripple & Noise		Other Output Models		1.0	1.3	%V _{PP} of Vo
Over Voltage Protection	Zener d	iode clamp		120		% of Vo
Temperature Coefficient				±0.02		%/°C
Overshoot					5	%
Over Load Protection	· ·	85VAC, Hiccup Mode, auto-recovery (long term overload condition may cause damage)				%Inom.
Short Circuit Protection	Hiccup mode, Automatic Recovery					

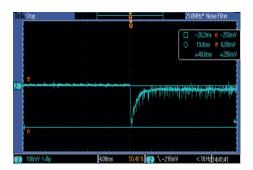
General Specifications						
Parameter	Conditions Min. Typ. Max.				Unit	
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds 4000			VAC		
Leakage Current			80		μΑ	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
Switching Frequency			132		kHz	
Hold-up Time	115VAC, 60Hz	115VAC, 60Hz 20			ms	
	230VAC, 50Hz		80		ms	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	400,000 Hours			Hours	
	UL/cUL 60950-1, CSA C22.2 No 60950-1					
Safety Standards	ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1					
	IEC/EN 60950-1, IEC/EN 60601-1 3rd Edition 2xMOPP					
	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)					
	ANSI/AAMI ES60601-1 2xMOPP recognition (UL certificate), IEC/EN 60601-1 3 rd Edition (CB-report)					

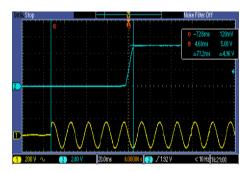
EMC Specifications						
Parameter		Standards & Le	evel			Performance
EMI	Conduction	EN 55011, EN 55032, EN	61000-6-4,	Without external components		Class D
EMI	Radiation	EN 61000-6-3				Class B
	EN 60601-1-2 4th, EN 55035	EN 60601-1-2 4th, EN 55035, EN 61000-6-2, EN 61000-6-1				
	ESD	EN 61000-4	-2 Air ± 15kV, Co	ontact ±	8kV	Α
	Radiated immunity EN 61000-4-3 10V/m				Α	
	Fast transient	Е	EN 61000-4-4 ±2kV			Α
	Surge	EN 61000-4-5 ±1kV			Α	
EMS	Conducted immunity	EN	I 61000-4-6 10Vr	ms		Α
	PFMF	EN	N 61000-4-8 30A	/m		Α
	Dips & Interruptions	EN 61000-4-11	0% of 230VA	AC	0.5 cycle	Α
			0% of 230VA	AC	1 cycle	Α
			70% of 230V	'AC	25/30 cycle	Α
			0% of 230VA	AC	250/300 cycle	В


Environmental Specifications						
Parameter	Condit	ions / Model	Min.	Тур.	Max.	Unit
Operating Ambient Temperature Range			-40		+80	°C
Devices Depositions	Aha C5°C	5V Output Models			0.75	W/°C
Power Derating	Above +65°C	Other Models			1.2	W/°C
Storage Temperature Range					+95	°C
The area of Charteless on	Shutdown, Internal	IC Junction Temperature		142		℃
Thermal Shutdown	Automatic Recovery, Internal IC Junction Temperature			67		°C
Humidity (non condensing)					95	% rel. H
Lead Temperature					200	••
(1.5mm from case for 10Sec.)					260	℃

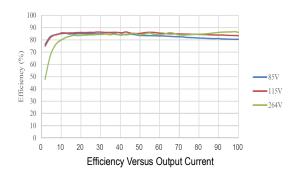
Notes

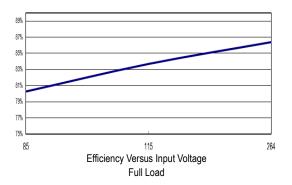

- 1 This product is not designed for use in critical life support systems, equipment used in hazardous environment, nuclear control systems or other such applications which necessitate specific safety and regulatory standards other the ones listed in this datasheet.
- 2 Specifications typical at Ta=+25°C, resistive load, 115VAC, 60Hz input voltage, after warm-up time rated output current unless otherwise noted.
- 3 Safety approvals cover frequency 47-63 Hz.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

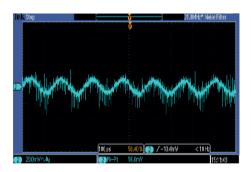

All test conditions are at 25°C The figures are identical for AJM-24S05

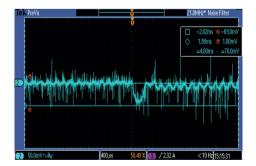


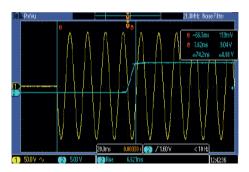
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom



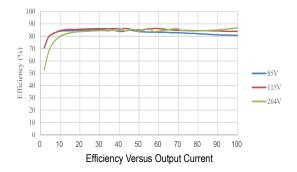

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

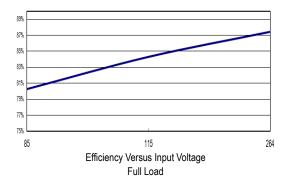

All test conditions are at 25°C The figures are identical for AJM-24S09

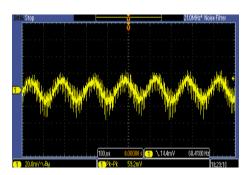


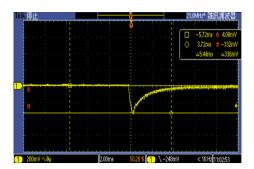
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$

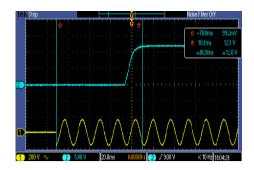
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

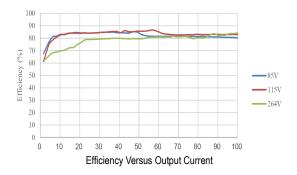

Date:2024-05-15 Rev:2

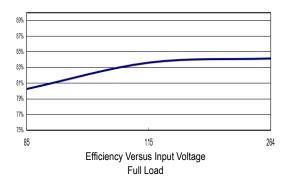

AJM-24 Series – EC Notes 5


All test conditions are at 25°C $\,$ The figures are identical for AJM-24S12 $\,$

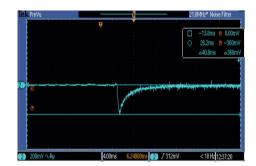


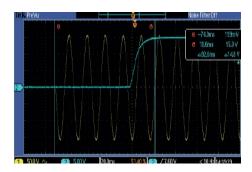
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

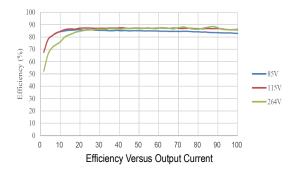


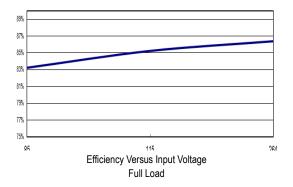
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

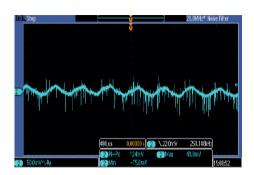

All test conditions are at 25°C $\,$ The figures are identical for AJM-24S15 $\,$



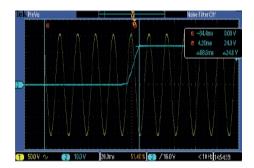
Typical Output Ripple and Noise $V_{\text{in}}\text{=}V_{\text{in nom}}\,;\,\text{Full Load}$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

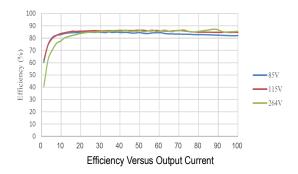


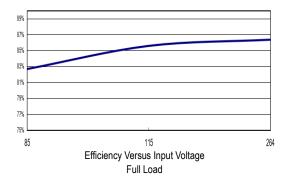

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

All test conditions are at 25°C The figures are identical for AJM-24S24

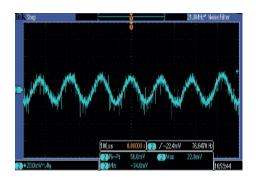


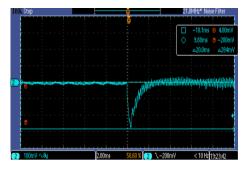
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

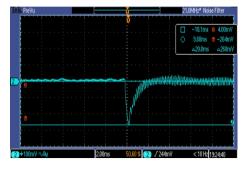

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

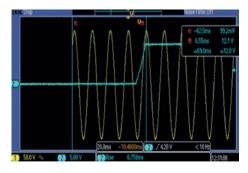


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$


All test conditions are at 25°C $\,$ The figures are identical for AJM-24D12 $\,$

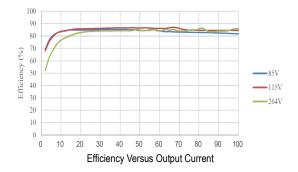


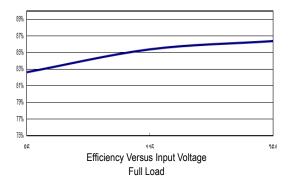

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (+Vout)

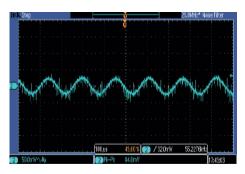

Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (-Vout)

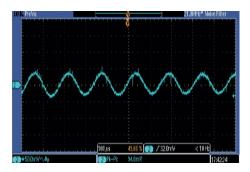

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{\text{in}}\text{=}V_{\text{in}\,\text{nom}}$ (+Vout)

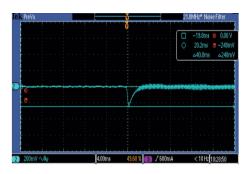
Transient Response to Dynamic Load Change from 100% to 75% of Full Load; $V_{in}=V_{in nom}$ (-Vout)

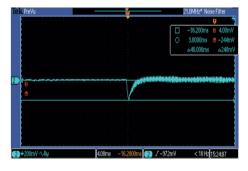

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load (+Vout)}$

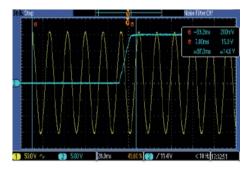



Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load (-Vout)


All test conditions are at 25°C $\,$ The figures are identical for AJM-24D15 $\,$




Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (+Vout)


Typical Output Ripple and Noise V_{in}=V_{in nom}; Full Load (-Vout)

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom (+Vout)

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; $V_{in}=V_{in nom}$ (-Vout)

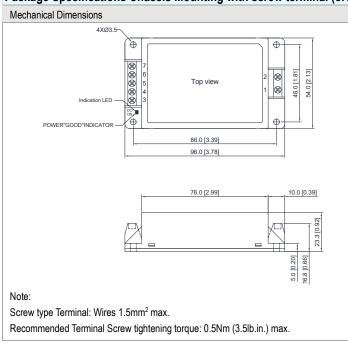
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load (+Vout)}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load (-Vout)

Pin Connections					
Pin	Single Output	Dual Output	Diameter mm (inches)		
1	AC (N)	AC (N)	Ø 1.0 [0.04]		
2	AC (L)	AC (L)	Ø 1.0 [0.04]		
3	No Pin	No Pin	Ø 1.0 [0.04]		
4	-Vout	-Vout	Ø 1.0 [0.04]		
5	No Pin	Common	Ø 1.0 [0.04]		
6	+Vout	+Vout	Ø 1.0 [0.04]		
7	No Pin	No Pin	Ø 1.0 [0.04]		
	Pin 1 2 3 4 5 6	Pin Single Output 1 AC (N) 2 AC (L) 3 No Pin 4 -Vout 5 No Pin 6 +Vout	Pin Single Output Dual Output 1 AC (N) AC (N) 2 AC (L) AC (L) 3 No Pin No Pin 4 -Vout -Vout 5 No Pin Common 6 +Vout +Vout		

- ► All dimensions in mm (inches)
- ➤ Tolerance: ±0.5 (±0.02)
- Pin pitch tolerance: ±0.25 (±0.01)
- ► Pin diameter tolerance: X.X±0.1 (X.XX±0.004)

Physical Characteristics


Case Size : 74.0x54.0x19.5mm (2.91x2.13x0.77 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy

Weight : 137g

Package Specifications Chassis Mounting with screw terminal (order code suffix C)

Connec	Connections					
Pin	Single Output	Dual Output				
1	AC (N)	AC (N)				
2	AC (L)	AC (L)				
3	NC	NC				
4	-Vout	-Vout				
5	NC	Common				
6	+Vout	+Vout				
7	NC	NC				

NC: No Connection

- ➤ All dimensions in mm (inches)
- ➤ Tolerance: ±0.5 (±0.02)

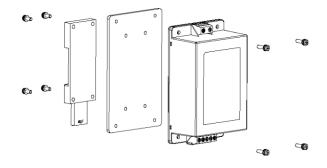
Physical Characteristics

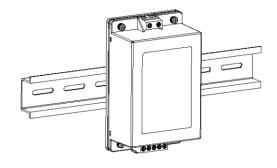
 Case Size
 : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)

 Case Material
 : Plastic resin (flammability to UL 94V-0 rated)

 Weight
 : 147g

Package Specifications for screw terminal with DIN Rail Mounting (order code suffix AC-DIN-01) Mechanical Dimensions 4X/83.5 Top view POWER'GCODYNDICATOR 76.0 [2.99] 10.0 [0.39] 76.0 [2.99] 10.0 [0.39]

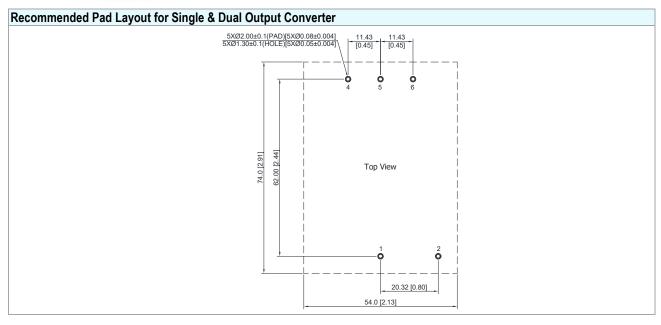

Physical Characteristics

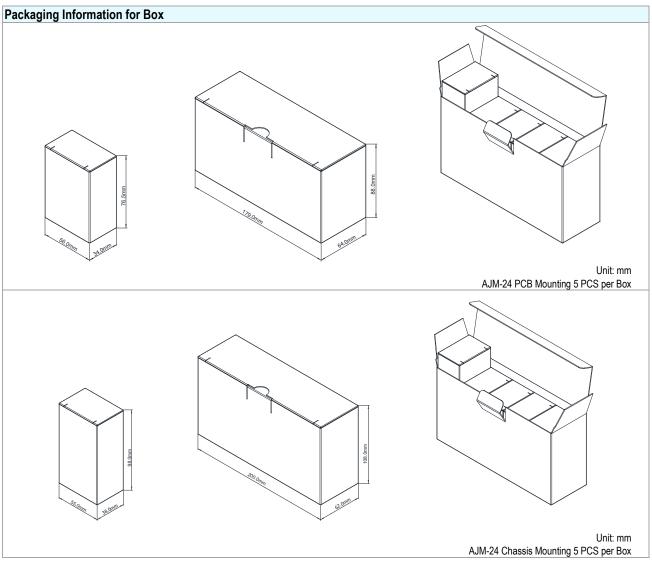

Case Size : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Weight : 201g

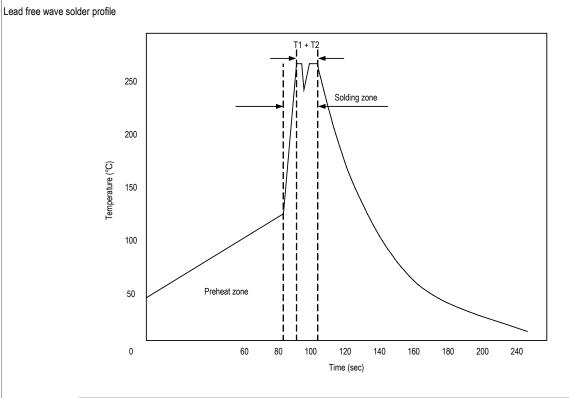
Screw terminal with DIN Rail Mounting





Note:

Recommended tightening torque: 0.35Nm (3.1lb.in.) max.



Wave Soldering Considerations

Zone	Reference Parameter	
Preheat	Rise temp. speed: 3°C/sec max.	
zone	Preheat temp.: 100~130°C	
Actual	Peak temp. : 250~260°C	
heating	Peak time(T1+T2): 4~6 sec	

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure C **AJM** 24 S 05 **Output Power Output Quantity Output Voltage** Package Type 24 Watt S: Single **VDC** N/A: **PCB Mounting** 05: 5 D: Dual 09: 9 **VDC** C: **Chassis Mounting with screw terminal VDC** 12 12: **VDC** 15: 15 24: 24 VDC

MTBF and Reliability

The MTBF of AJM-24 series of AC-DC Power Module has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
AJM-24S05		
AJM-24S09		
AJM-24S12		
AJM-24S15	400,000	Hours
AJM-24S24		
AJM-24D12		
AJM-24D15		